Difference between revisions of "2000 AIME II Problems/Problem 1"

(Solution 2)
Line 35: Line 35:
 
Therefore our answer is <math>1 + 6 = \boxed{007}</math>.
 
Therefore our answer is <math>1 + 6 = \boxed{007}</math>.
  
 +
== Solution 3 ==
 +
We know that <math>2 = \log_4{16}</math> and <math>3 = \log_5{125}</math>, and by base of change formula, <math>\log_a{b} = \frac{\log_c{b}}{\log_c{a}}</math>. Lastly, notice <math>\log a + \log b = \log ab</math> for all bases.
 +
<cmath>
 +
\begin{align*}
 +
\frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}} = \log_{2000^6}{16} + \log_{2000^6}{125} = \log_{2000^6}{2000} = \frac16 \implies \boxed{007} \end{align*}</cmath>
 +
 +
<math>\bold{Solution}</math> <math>\bold{written}</math> <math>\bold{by}</math>
 +
 +
~ <math>\bold{PaperMath}</math>
  
 
{{AIME box|year=2000|n=II|before=First Question|num-a=2}}
 
{{AIME box|year=2000|n=II|before=First Question|num-a=2}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:27, 16 August 2023

Problem

The number

$\frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}}$

can be written as $\frac mn$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

Solution

Solution 1

$\frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}}$

$=\frac{\log_4{16}}{\log_4{2000^6}}+\frac{\log_5{125}}{\log_5{2000^6}}$

$=\frac{\log{16}}{\log{2000^6}}+\frac{\log{125}}{\log{2000^6}}$

$=\frac{\log{2000}}{\log{2000^6}}$

$=\frac{\log{2000}}{6\log{2000}}$

$=\frac{1}{6}$

Therefore, $m+n=1+6=\boxed{007}$

Solution 2

Alternatively, we could've noted that, because $\frac 1{\log_a{b}} = \log_b{a}$

\begin{align*} \frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}} &= 2 \cdot \frac{1}{\log_4{2000^6}} + 3\cdot \frac {1}{\log_5{2000^6} }\\ &=2{\log_{2000^6}{4}} + 3{\log_{2000^6}{5}} \\ &={\log_{2000^6}{4^2}} + {\log_{2000^6}{5^3}}\\ &={\log_{2000^6}{4^2 \cdot 5^3}}\\ &={\log_{2000^6}{2000}}\\ &= {\frac{1}{6}}.\end{align*}

Therefore our answer is $1 + 6 = \boxed{007}$.

Solution 3

We know that $2 = \log_4{16}$ and $3 = \log_5{125}$, and by base of change formula, $\log_a{b} = \frac{\log_c{b}}{\log_c{a}}$. Lastly, notice $\log a + \log b = \log ab$ for all bases. \begin{align*} \frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}} = \log_{2000^6}{16} + \log_{2000^6}{125} = \log_{2000^6}{2000} = \frac16 \implies \boxed{007} \end{align*}

$\bold{Solution}$ $\bold{written}$ $\bold{by}$

~ $\bold{PaperMath}$

2000 AIME II (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png