# 2000 AIME II Problems/Problem 1

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

The number $\frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}}$

can be written as $\frac mn$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

## Solution

### Solution 1 $\frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}}$ $=\frac{\log_4{16}}{\log_4{2000^6}}+\frac{\log_5{125}}{\log_5{2000^6}}$ $=\frac{\log{16}}{\log{2000^6}}+\frac{\log{125}}{\log{2000^6}}$ $=\frac{\log{2000}}{\log{2000^6}}$ $=\frac{\log{2000}}{6\log{2000}}$ $=\frac{1}{6}$

Therefore, $m+n=1+6=\boxed{007}$

### Solution 2

Alternatively, we could've noted that, because $\frac 1{\log_a{b}} = \log_b{a}$ \begin{align*} \frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}} &= 2 \cdot \frac{1}{\log_4{2000^6}} + 3\cdot \frac {1}{\log_5{2000^6} }\\ &=2{\log_{2000^6}{4}} + 3{\log_{2000^6}{5}} \\ &={\log_{2000^6}{4^2}} + {\log_{2000^6}{5^3}}\\ &={\log_{2000^6}{4^2 \cdot 5^3}}\\ &={\log_{2000^6}{2000}}\\ &= {\frac{1}{6}}.\end{align*}

Therefore our answer is $1 + 6 = \boxed{7}$.

 2000 AIME II (Problems • Answer Key • Resources) Preceded byFirst Question Followed byProblem 2 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS