Difference between revisions of "2004 AMC 12B Problems/Problem 19"

(problem/solution/images)
 
m (Solution: <asy> fix)
Line 12: Line 12:
 
<center><asy>
 
<center><asy>
 
import olympiad;
 
import olympiad;
size(250);
+
size(220);
 
defaultpen(0.7);
 
defaultpen(0.7);
 
pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2;
 
pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2;
Line 31: Line 31:
 
<center><asy>
 
<center><asy>
 
import olympiad;
 
import olympiad;
size(400);
+
size(450);
 
defaultpen(0.7);
 
defaultpen(0.7);
 
pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2, H=(16,0);
 
pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2, H=(16,0);
pair P=(D+G)/2, Q=(D+H)/2, R=(B+E)/2, T=(A+H)/2;
+
pair P=(D+G)/2, Q=(D+H)/2, R=(B+E)/2, T=(A+H)/2, O=(E+G)/2;
 
draw(A--B--C--D--cycle);
 
draw(A--B--C--D--cycle);
 
draw(G--E--H--D);
 
draw(G--E--H--D);
 
draw(circumcircle(E,F,G));
 
draw(circumcircle(E,F,G));
dot(E);
+
dot(E);dot(F);dot(G);dot(H);dot(O);
dot(F);
 
dot(G);
 
dot(H);
 
 
label("\(A\)",A,S);
 
label("\(A\)",A,S);
 
label("\(B\)",B,S);
 
label("\(B\)",B,S);
Line 50: Line 47:
 
label("\(G\)",G,N);
 
label("\(G\)",G,N);
 
label("\(H\)",H,S);
 
label("\(H\)",H,S);
label("\(O\)",(E+G)/2,E);
+
label("\(O\)",O,NE);
 
label("\(2\)",P,N);
 
label("\(2\)",P,N);
 
label("\(12\)",Q,W);
 
label("\(12\)",Q,W);
Line 56: Line 53:
 
label("\(16\)",T,S);
 
label("\(16\)",T,S);
 
label("\(20\)",(A+D)/2,NW);
 
label("\(20\)",(A+D)/2,NW);
 +
label("\(r\)",(O+E)/2,SE);
 
</asy></center>
 
</asy></center>
  

Revision as of 11:49, 10 February 2008

Problem

A truncated cone has horizontal bases with radii $18$ and $2$. A sphere is tangent to the top, bottom, and lateral surface of the truncated cone. What is the radius of the sphere?

$\mathrm{(A)}\ 6 \qquad\mathrm{(B)}\ 4\sqrt{5} \qquad\mathrm{(C)}\ 9 \qquad\mathrm{(D)}\ 10 \qquad\mathrm{(E)}\ 6\sqrt{3}$

Solution

Consider a trapezoidal (label it $ABCD$ as follows) cross-section of the truncate cone along a diameter of the bases:

[asy] import olympiad; size(220); defaultpen(0.7); pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2; draw(A--B--C--D--cycle); draw(circumcircle(E,F,G)); dot(E); dot(F); dot(G); label("\(A\)",A,S); label("\(B\)",B,S); label("\(C\)",C,NE); label("\(D\)",D,NW); label("\(E\)",E,S); label("\(F\)",F,NE); label("\(G\)",G,N); [/asy]

Above, $E,F,$ and $G$ are points of tangency. By the Two Tangent Theorem, $BF = BE = 18$ and $CF = CG = 2$, so $BC = 20$. We draw $H$ such that it is the foot of the altitude $\overline{HD}$ to $\overline{AB}$:

[asy] import olympiad; size(450); defaultpen(0.7); pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2, H=(16,0); pair P=(D+G)/2, Q=(D+H)/2, R=(B+E)/2, T=(A+H)/2, O=(E+G)/2; draw(A--B--C--D--cycle); draw(G--E--H--D); draw(circumcircle(E,F,G)); dot(E);dot(F);dot(G);dot(H);dot(O); label("\(A\)",A,S); label("\(B\)",B,S); label("\(C\)",C,NE); label("\(D\)",D,NW); label("\(E\)",E,S); label("\(F\)",F,NE); label("\(G\)",G,N); label("\(H\)",H,S); label("\(O\)",O,NE); label("\(2\)",P,N); label("\(12\)",Q,W); label("\(18\)",R,S); label("\(16\)",T,S); label("\(20\)",(A+D)/2,NW); label("\(r\)",(O+E)/2,SE); [/asy]

By the Pythagorean Theorem, \[r = \frac{CH}2 = \frac{\sqrt{20^2 - 16^2}}2 = \boxed{6} \Rightarrow \mathrm{(A)}.\]

See also

2004 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions