Difference between revisions of "2005 AIME I Problems/Problem 6"

m (+box)
(category)
Line 6: Line 6:
 
<math>(x - 1)^4 = 2006</math>.
 
<math>(x - 1)^4 = 2006</math>.
  
Let <math>r = \sqrt[4]{2006}</math> be the positive [[real]] fourth root of 2006.  Then the roots of the above equation are <math>x = 1 + i^n r</math> for <math>n = 0, 1, 2, 3</math>.  The two non-real members of this set are <math>1 + ir</math> and <math>1 - ir</math>.  Their product is <math>\displaystyle P = 1 + r^2 = 1 + \sqrt{2006}</math>.  <math>44^2 = 1936 < 2006 < 2025 = 45^2</math> so <math>\lfloor P \rfloor = 1 + 44 = 045</math>.
+
Let <math>r = \sqrt[4]{2006}</math> be the positive [[real]] fourth root of 2006.  Then the roots of the above equation are <math>x = 1 + i^n r</math> for <math>n = 0, 1, 2, 3</math>.  The two non-real members of this set are <math>1 + ir</math> and <math>1 - ir</math>.  Their product is <math>P = 1 + r^2 = 1 + \sqrt{2006}</math>.  <math>44^2 = 1936 < 2006 < 2025 = 45^2</math> so <math>\lfloor P \rfloor = 1 + 44 = 045</math>.
  
 
== See also ==
 
== See also ==
Line 12: Line 12:
  
 
[[Category:Intermediate Algebra Problems]]
 
[[Category:Intermediate Algebra Problems]]
[[Category:Intermediate Complex Numbers Problems]]
 

Revision as of 22:17, 30 November 2007

Problem

Let $P$ be the product of the nonreal roots of $x^4-4x^3+6x^2-4x=2005.$ Find $\lfloor P\rfloor.$

Solution

The left-hand side of that equation is nearly equal to $(x - 1)^4$. Thus, we add 1 to each side in order to complete the fourth power and get $(x - 1)^4 = 2006$.

Let $r = \sqrt[4]{2006}$ be the positive real fourth root of 2006. Then the roots of the above equation are $x = 1 + i^n r$ for $n = 0, 1, 2, 3$. The two non-real members of this set are $1 + ir$ and $1 - ir$. Their product is $P = 1 + r^2 = 1 + \sqrt{2006}$. $44^2 = 1936 < 2006 < 2025 = 45^2$ so $\lfloor P \rfloor = 1 + 44 = 045$.

See also

2005 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions