# Difference between revisions of "2005 AMC 10A Problems/Problem 23"

## Problem

Let $AB$ be a diameter of a circle and let $C$ be a point on $AB$ with $2\cdot AC=BC$. Let $D$ and $E$ be points on the circle such that $DC \perp AB$ and $DE$ is a second diameter. What is the ratio of the area of $\triangle DCE$ to the area of $\triangle ABD$?

$\mathrm{(A) \ } \frac{1}{6}\qquad \mathrm{(B) \ } \frac{1}{4}\qquad \mathrm{(C) \ } \frac{1}{3}\qquad \mathrm{(D) \ } \frac{1}{2}\qquad \mathrm{(E) \ } \frac{2}{3}$. The area of

## Solution

$AC$ is $\frac{1}{3}$ of diameter and $CO$ is $\frac{1}{2}$ - $\frac{1}{3}$ = $\frac{1}{6}$. $OD$ is the radius of the circle, so using the Pythagorean theorem height $CD$ of $\triangle ADB$ is $\sqrt{(\frac{1}{2})^2-(\frac{1}{6})^2$ (Error compiling LaTeX. ! Missing } inserted.) = $\frac{\sqrt{2}}{3}$. Area of the $\triangle DCO$ is $\frac{1}{2}\cdot\frac{1}{6}\cdot\frac{\sqrt{2}}{3}$ = $\frac{\sqrt{2}}{36}$. The height of $\triangle DCE$ can be found using the area of $\triangle DCO$ and $DO$ as base. Hence the height of $\triangle DCE$ is $\frac{frac{\sqrt{2}}{36}}{\frac{1}{2}\cdot\frac{1}{2}}$