Difference between revisions of "2005 AMC 10A Problems/Problem 4"

(Solution)
(Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
Let the width of the rectangle be <math>w</math>. Then the length is <math>2w</math>.
+
This problem does not make sense.
 
 
Using the [[Pythagorean Theorem]]:
 
 
 
<math>x^{2}=w^{2}+(2w)^{2}</math>
 
 
 
<math>x^{2}=5w^{2}</math>
 
 
 
The [[area]] of the [[rectangle]] is <math>2w^2=\frac{2}{5}x^2</math>
 
 
 
<math>(B)</math>
 
  
 
==Video Solution==
 
==Video Solution==

Revision as of 14:03, 7 December 2020

Problem

A rectangle with a diagonal of length $x$ is twice as long as it is wide. What is the area of the rectangle?

$\mathrm{(A) \ } \frac{1}{4}x^2\qquad \mathrm{(B) \ } \frac{2}{5}x^2\qquad \mathrm{(C) \ } \frac{1}{2}x^2\qquad \mathrm{(D) \ } x^2\qquad \mathrm{(E) \ } \frac{3}{2}x^2$

Solution

This problem does not make sense.

Video Solution

CHECK OUT Video Solution: https://youtu.be/X8QyT5RR-_M

See also

2005 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS