Difference between revisions of "2005 AMC 12A Problems/Problem 22"

m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
A rectangular box <math> P </math> is [[inscribe]]d in a [[sphere]] of [[radius]] <math>r</math>. The [[surface area]] of <math>P</math> is 384, and the sum of the lengths of it's 12 edges is 112. What is <math>r</math>?
 
A rectangular box <math> P </math> is [[inscribe]]d in a [[sphere]] of [[radius]] <math>r</math>. The [[surface area]] of <math>P</math> is 384, and the sum of the lengths of it's 12 edges is 112. What is <math>r</math>?
 +
 +
<math>\mathrm{(A)}\ 8\qquad \mathrm{(B)}\ 10\qquad \mathrm{(C)}\ 12\qquad \mathrm{(D)}\ 14\qquad \mathrm{(E)}\ 16</math>
  
 
== Solution ==
 
== Solution ==
Line 7: Line 9:
 
* <math>4a+4b+4c=112</math>
 
* <math>4a+4b+4c=112</math>
 
* <math>a+b+c=28</math>
 
* <math>a+b+c=28</math>
Now we make a formula for r. Since the diameter of the sphere is the space diagonal of the box,
+
Now we make a formula for <math>r</math>. Since the [[diameter]] of the sphere is the space diagonal of the box,
 
* <math>r=\frac{\sqrt{a^2+b^2+c^2}}{2}</math>
 
* <math>r=\frac{\sqrt{a^2+b^2+c^2}}{2}</math>
We square a+b+c:
+
We square <math>a+b+c</math>:
 
* <math>(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2+384=784</math>
 
* <math>(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2+384=784</math>
 
We get that
 
We get that
Line 15: Line 17:
  
 
== See also ==
 
== See also ==
* [[2005 AMC 12A Problems/Problem 21 | Previous problem]]
+
{{AMC12 box|year=2005|num-b=21|num-a=23|ab=A}}
* [[2005 AMC 12A Problems/Problem 23 | Next problem]]
+
 
* [[2005 AMC 12A Problems]]
+
[[Category:Intermediate Geometry Problems]]

Revision as of 16:00, 9 September 2007

Problem

A rectangular box $P$ is inscribed in a sphere of radius $r$. The surface area of $P$ is 384, and the sum of the lengths of it's 12 edges is 112. What is $r$?

$\mathrm{(A)}\ 8\qquad \mathrm{(B)}\ 10\qquad \mathrm{(C)}\ 12\qquad \mathrm{(D)}\ 14\qquad \mathrm{(E)}\ 16$

Solution

The box P has dimensions a, b, and c. Therefore,

  • $2ab+2ac+2bc=384$
  • $4a+4b+4c=112$
  • $a+b+c=28$

Now we make a formula for $r$. Since the diameter of the sphere is the space diagonal of the box,

  • $r=\frac{\sqrt{a^2+b^2+c^2}}{2}$

We square $a+b+c$:

  • $(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2+384=784$

We get that

  • $\frac{\sqrt{a^2+b^2+c^2}}{2}=10=r$

See also

2005 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions