2010 AIME II Problems/Problem 15

Revision as of 20:19, 13 March 2015 by Mathgeek2006 (talk | contribs)

Problem 15

In triangle $ABC$, $AC = 13$, $BC = 14$, and $AB=15$. Points $M$ and $D$ lie on $AC$ with $AM=MC$ and $\angle ABD = \angle DBC$. Points $N$ and $E$ lie on $A$B with $AN=NB$ and $\angle ACE = \angle ECB$. Let $P$ be the point, other than $A$, of intersection of the circumcircles of $\triangle AMN$ and $\triangle ADE$. Ray $AP$ meets $BC$ at $Q$. The ratio $\frac{BQ}{CQ}$ can be written in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m-n$.

Solution

Let $Y = MN \cap AQ$. $\frac {BQ}{QC} = \frac {NY}{MY}$ since $\triangle AMN \sim \triangle ACB$. Since quadrilateral $AMPN$ is cyclic, $\triangle MYA \sim \triangle PYN$ and $\triangle MYP \sim \triangle AYN$, yielding $\frac {YM}{YA} = \frac {MP}{AN}$ and $\frac {YA}{YN} = \frac {AM}{PN}$. Multiplying these together yields $\frac {YN}{YM} = \left(\frac {AN}{AM}\right) \left(\frac {PN}{PM}\right)$.

$\frac {AN}{AM} = \frac {\frac {AB}{2}}{\frac {AC}{2}} = \frac {15}{13}$. Also, $P$ is the center of spiral similarity of segments $MD$ and $NE$, so $\triangle PMD \sim \triangle PNE$. Therefore, $\frac {PN}{PM} = \frac {NE}{MD}$, which can easily be computed by the angle bisector theorem to be $\frac {145}{117}$. It follows that $\frac {BQ}{CQ} = \frac {15}{13} \cdot \frac {145}{117} = \frac {725}{507}$, giving us an answer of $725 - 507 = \boxed{218}$.

Note: Spiral similarities may sound complex, but they're really not. The fact that $\triangle PMD \sim \triangle PNE$ is really just a result of simple angle chasing.

Source: [1] by Zhero

See Also

2010 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS