Difference between revisions of "2012 AIME I Problems/Problem 5"

(Remove extra problem section)
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
== Problem 5 ==
+
== Problem ==
 
Let <math>B</math> be the set of all binary integers that can be written using exactly <math>5</math> zeros and <math>8</math> ones where leading zeros are allowed. If all possible subtractions are performed in which one element of <math>B</math> is subtracted from another, find the number of times the answer <math>1</math> is obtained.
 
Let <math>B</math> be the set of all binary integers that can be written using exactly <math>5</math> zeros and <math>8</math> ones where leading zeros are allowed. If all possible subtractions are performed in which one element of <math>B</math> is subtracted from another, find the number of times the answer <math>1</math> is obtained.
  
Line 5: Line 5:
  
 
When <math>1</math> is subtracted from a binary number, the number of digits will remain constant if and only if the original number ended in <math>10.</math> Therefore, every subtraction involving two numbers from <math>B</math> will necessarily involve exactly one number ending in <math>10.</math> To solve the problem, then, we can simply count the instances of such numbers. With the <math>10</math> in place, the seven remaining <math>1</math>'s can be distributed in any of the remaining <math>11</math> spaces, so the answer is <math>{11 \choose 7} = \boxed{330}</math>.
 
When <math>1</math> is subtracted from a binary number, the number of digits will remain constant if and only if the original number ended in <math>10.</math> Therefore, every subtraction involving two numbers from <math>B</math> will necessarily involve exactly one number ending in <math>10.</math> To solve the problem, then, we can simply count the instances of such numbers. With the <math>10</math> in place, the seven remaining <math>1</math>'s can be distributed in any of the remaining <math>11</math> spaces, so the answer is <math>{11 \choose 7} = \boxed{330}</math>.
 +
 +
==Video Solution==
 +
 +
https://www.youtube.com/watch?v=cQmmkfZvPgU&t=30s
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2012|n=I|num-b=4|num-a=6}}
 
{{AIME box|year=2012|n=I|num-b=4|num-a=6}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:18, 24 January 2021

Problem

Let $B$ be the set of all binary integers that can be written using exactly $5$ zeros and $8$ ones where leading zeros are allowed. If all possible subtractions are performed in which one element of $B$ is subtracted from another, find the number of times the answer $1$ is obtained.

Solution

When $1$ is subtracted from a binary number, the number of digits will remain constant if and only if the original number ended in $10.$ Therefore, every subtraction involving two numbers from $B$ will necessarily involve exactly one number ending in $10.$ To solve the problem, then, we can simply count the instances of such numbers. With the $10$ in place, the seven remaining $1$'s can be distributed in any of the remaining $11$ spaces, so the answer is ${11 \choose 7} = \boxed{330}$.

Video Solution

https://www.youtube.com/watch?v=cQmmkfZvPgU&t=30s

See also

2012 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png