Difference between revisions of "2015 AMC 10A Problems/Problem 24"

Line 1: Line 1:
==Problem 24==
+
{{duplicate|[[2015 AMC 12A Problems|2015 AMC 12A #19]] and [[2015 AMC 10A Problems|2015 AMC 10A #24]]}}
 +
==Problem==
 
For some positive integers <math>p</math>, there is a quadrilateral <math>ABCD</math> with positive integer side lengths, perimeter <math>p</math>, right angles at <math>B</math> and <math>C</math>, <math>AB=2</math>, and <math>CD=AD</math>.  How many different values of <math>p<2015</math> are possible?
 
For some positive integers <math>p</math>, there is a quadrilateral <math>ABCD</math> with positive integer side lengths, perimeter <math>p</math>, right angles at <math>B</math> and <math>C</math>, <math>AB=2</math>, and <math>CD=AD</math>.  How many different values of <math>p<2015</math> are possible?
  
 
<math>\textbf{(A) }30\qquad\textbf{(B) }31\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63</math>
 
<math>\textbf{(A) }30\qquad\textbf{(B) }31\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63</math>
  
==Solution 24==
+
==Solution==
 
Let <math>BC = x</math> and <math>CD = AD = y</math> be positive integers. Drop a perpendicular from <math>A</math> to <math>CD</math> to show that, using the Pythagorean Theorem, that
 
Let <math>BC = x</math> and <math>CD = AD = y</math> be positive integers. Drop a perpendicular from <math>A</math> to <math>CD</math> to show that, using the Pythagorean Theorem, that
 
<cmath>x^2 + (y - 2)^2 = y^2.</cmath>
 
<cmath>x^2 + (y - 2)^2 = y^2.</cmath>
Line 10: Line 11:
  
 
The perimeter <math>p = 2 + x + 2y = 2y + 2\sqrt{y - 1} + 2</math> must be less than 2015. Simple calculations demonstrate that <math>y = 31^2 + 1 = 962</math> is valid, but <math>y = 32^2 + 1 = 1025</math> is not. On the lower side, <math>y = 1</math> does not work (because <math>x > 0</math>), but <math>y = 1^2 + 1</math> does work. Hence, there are 31 valid <math>y</math> (all <math>y</math> such that <math>y = n^2 + 1</math> for <math>1 \le n \le 31</math>), and so our answer is <math>\textbf{(B)}.</math>
 
The perimeter <math>p = 2 + x + 2y = 2y + 2\sqrt{y - 1} + 2</math> must be less than 2015. Simple calculations demonstrate that <math>y = 31^2 + 1 = 962</math> is valid, but <math>y = 32^2 + 1 = 1025</math> is not. On the lower side, <math>y = 1</math> does not work (because <math>x > 0</math>), but <math>y = 1^2 + 1</math> does work. Hence, there are 31 valid <math>y</math> (all <math>y</math> such that <math>y = n^2 + 1</math> for <math>1 \le n \le 31</math>), and so our answer is <math>\textbf{(B)}.</math>
 +
 +
== See Also ==
 +
{{AMC10 box|year=2015|ab=A|num-b=23|num-a=25}}
 +
{{AMC12 box|year=2015|ab=A|num-b=18|num-a=20}}

Revision as of 20:54, 4 February 2015

The following problem is from both the 2015 AMC 12A #19 and 2015 AMC 10A #24, so both problems redirect to this page.

Problem

For some positive integers $p$, there is a quadrilateral $ABCD$ with positive integer side lengths, perimeter $p$, right angles at $B$ and $C$, $AB=2$, and $CD=AD$. How many different values of $p<2015$ are possible?

$\textbf{(A) }30\qquad\textbf{(B) }31\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$

Solution

Let $BC = x$ and $CD = AD = y$ be positive integers. Drop a perpendicular from $A$ to $CD$ to show that, using the Pythagorean Theorem, that \[x^2 + (y - 2)^2 = y^2.\] Simplifying yields $x^2 - 4y + 4 = 0$, so $x^2 = 4(y - 1)$. Thus, $y$ is one more than a perfect square.

The perimeter $p = 2 + x + 2y = 2y + 2\sqrt{y - 1} + 2$ must be less than 2015. Simple calculations demonstrate that $y = 31^2 + 1 = 962$ is valid, but $y = 32^2 + 1 = 1025$ is not. On the lower side, $y = 1$ does not work (because $x > 0$), but $y = 1^2 + 1$ does work. Hence, there are 31 valid $y$ (all $y$ such that $y = n^2 + 1$ for $1 \le n \le 31$), and so our answer is $\textbf{(B)}.$

See Also

2015 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2015 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions