Difference between revisions of "2017 AMC 8 Problems/Problem 19"

m (Video Solution)
m (Solution 2)
(4 intermediate revisions by 4 users not shown)
Line 5: Line 5:
  
 
==Solution 1==
 
==Solution 1==
Factoring out <math>98!+99!+100!</math>, we have <math>98!(1+99+99*100)</math> which is <math>98!(10000)</math> Next, <math>98!</math> has <math>\left\lfloor\frac{98}{5}\right\rfloor + \left\lfloor\frac{98}{25}\right\rfloor = 19 + 3 = 22</math> factors of <math>5</math>. The <math>19</math> is because of all the multiples of <math>5</math>. Now <math>10,000</math> has <math>4</math> factors of <math>5</math>, so there are a total of <math>22 + 4 = \boxed{\textbf{(D)}\ 26}</math> factors of <math>5</math>.
+
Factoring out <math>98!+99!+100!</math>, we have <math>98! (1+99+99*100)</math>, which is <math>98! (10000)</math>. Next, <math>98!</math> has <math>\left\lfloor\frac{98}{5}\right\rfloor + \left\lfloor\frac{98}{25}\right\rfloor = 19 + 3 = 22</math> factors of <math>5</math>. The <math>19</math> is because of all the multiples of <math>5</math>. Now, <math>10,000</math> has <math>4</math> factors of <math>5</math>, so there are a total of <math>22 + 4 = \boxed{\textbf{(D)}\ 26}</math> factors of <math>5</math>.
  
 
==Solution 2==
 
==Solution 2==
Also keep in mind that number of 5’s in 98!(10,000) is the same as the number of trailing zeros. Number of zeros is 98! means we need pairs of 5’s and 2’s; we know there will be many more 2’s, so we seek to find number of 5’s in 98! which solution tells us and that is 22 factors of 5. 10,000 has 4 trailing zeros, so it has 4 factors of 5 and 22 + 4 = 26.
+
Also, keep in mind that the number of <math>5</math>’s in <math>98! (10,000)</math> is the same as the number of trailing zeros. The number of zeros is <math>98!</math>, which means we need pairs of <math>5</math>’s and <math>2</math>’s; we know there will be many more <math>2</math>’s, so we seek to find the number of <math>5</math>’s in <math>98!</math>, which the solution tells us. And, that is <math>22</math> factors of <math>5</math>. <math>10,000</math> has <math>4</math> trailing zeros, so it has <math>4</math> factors of <math>5</math> and <math>22 + 4 = 26</math>.
 +
 
 +
== Video Solution by OmegaLearn==
 +
https://youtu.be/HISL2-N5NVg?t=817
 +
 
 +
~ pi_is_3.14
  
 
== Video Solution ==
 
== Video Solution ==
 
https://youtu.be/alj9Y8jGNz8
 
https://youtu.be/alj9Y8jGNz8
  
https://youtu.be/HISL2-N5NVg?t=817
+
https://youtu.be/meEuDzrM5Ac
  
~ pi_is_3.14
+
~savannahsolver
  
 
==See Also==
 
==See Also==

Revision as of 19:52, 13 January 2023

Problem

For any positive integer $M$, the notation $M!$ denotes the product of the integers $1$ through $M$. What is the largest integer $n$ for which $5^n$ is a factor of the sum $98!+99!+100!$ ?

$\textbf{(A) }23\qquad\textbf{(B) }24\qquad\textbf{(C) }25\qquad\textbf{(D) }26\qquad\textbf{(E) }27$

Solution 1

Factoring out $98!+99!+100!$, we have $98! (1+99+99*100)$, which is $98! (10000)$. Next, $98!$ has $\left\lfloor\frac{98}{5}\right\rfloor + \left\lfloor\frac{98}{25}\right\rfloor = 19 + 3 = 22$ factors of $5$. The $19$ is because of all the multiples of $5$. Now, $10,000$ has $4$ factors of $5$, so there are a total of $22 + 4 = \boxed{\textbf{(D)}\ 26}$ factors of $5$.

Solution 2

Also, keep in mind that the number of $5$’s in $98! (10,000)$ is the same as the number of trailing zeros. The number of zeros is $98!$, which means we need pairs of $5$’s and $2$’s; we know there will be many more $2$’s, so we seek to find the number of $5$’s in $98!$, which the solution tells us. And, that is $22$ factors of $5$. $10,000$ has $4$ trailing zeros, so it has $4$ factors of $5$ and $22 + 4 = 26$.

Video Solution by OmegaLearn

https://youtu.be/HISL2-N5NVg?t=817

~ pi_is_3.14

Video Solution

https://youtu.be/alj9Y8jGNz8

https://youtu.be/meEuDzrM5Ac

~savannahsolver

See Also

2017 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png