Difference between revisions of "2017 AMC 8 Problems/Problem 25"
Topnotchmath (talk | contribs) |
(→Solution) |
||
Line 21: | Line 21: | ||
label("$S'$", (0,0), W); | label("$S'$", (0,0), W); | ||
label("$T'$", (4,0), E);</asy> | label("$T'$", (4,0), E);</asy> | ||
− | |||
− | |||
==See Also== | ==See Also== |
Revision as of 22:49, 22 November 2017
Problem 25
In the figure shown, and are line segments each of length 2, and . Arcs and are each one-sixth of a circle with radius 2. What is the area of the region shown?
Solution
Let the centers of the circles containing arcs and be and , respectively. Extend and to and . The area of the figure is equal to the area of equilateral triangle minus the combined area of the sectors of the circles. The area of is The combined area of the sectors is Our final answer is then
See Also
2017 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.