Difference between revisions of "2018 AIME II Problems/Problem 8"

(Created page with "==Problem== A frog is positioned at the origin of the coordinate plane. From the point <math>(x, y)</math>, the frog can jump to any of the points <math>(x + 1, y)</math>, <m...")
 
(Problem)
Line 3: Line 3:
 
A frog is positioned at the origin of the coordinate plane. From the point <math>(x, y)</math>, the frog can jump to any of the points <math>(x + 1, y)</math>, <math>(x + 2, y)</math>, <math>(x, y + 1)</math>, or <math>(x, y + 2)</math>. Find the number of distinct sequences of jumps in which the frog begins at <math>(0, 0)</math> and ends at <math>(4, 4)</math>.
 
A frog is positioned at the origin of the coordinate plane. From the point <math>(x, y)</math>, the frog can jump to any of the points <math>(x + 1, y)</math>, <math>(x + 2, y)</math>, <math>(x, y + 1)</math>, or <math>(x, y + 2)</math>. Find the number of distinct sequences of jumps in which the frog begins at <math>(0, 0)</math> and ends at <math>(4, 4)</math>.
  
 +
==Solution==
 +
We solve this problem by working backwards. Notice, the only points the frog can be on to jump to <math>(4,4)</math> in one move are <math>(2,4),(3,4),(4,2),</math> and <math>(4,3)</math>. This applies to any other point, thus we can work our way from <math>(0,0)</math> to <math>(4,4)</math>, recording down the number of ways to get to each point.
 +
<math>\begin{tikzpicture}
 +
\draw[step=0.5cm, color=gray] (0,0) grid(4,4);
 +
\end{tikzpicture}</math>
 
{{AIME box|year=2018|n=II|num-b=7|num-a=9}}
 
{{AIME box|year=2018|n=II|num-b=7|num-a=9}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 11:12, 24 March 2018

Problem

A frog is positioned at the origin of the coordinate plane. From the point $(x, y)$, the frog can jump to any of the points $(x + 1, y)$, $(x + 2, y)$, $(x, y + 1)$, or $(x, y + 2)$. Find the number of distinct sequences of jumps in which the frog begins at $(0, 0)$ and ends at $(4, 4)$.

Solution

We solve this problem by working backwards. Notice, the only points the frog can be on to jump to $(4,4)$ in one move are $(2,4),(3,4),(4,2),$ and $(4,3)$. This applies to any other point, thus we can work our way from $(0,0)$ to $(4,4)$, recording down the number of ways to get to each point. $\begin{tikzpicture} \draw[step=0.5cm, color=gray] (0,0) grid(4,4); \end{tikzpicture}$ (Error compiling LaTeX. Unknown error_msg)

2018 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png