Difference between revisions of "2020 AIME I Problems"
(→Problem 1) |
Brendanb4321 (talk | contribs) (→Problem 1) |
||
Line 2: | Line 2: | ||
==Problem 1== | ==Problem 1== | ||
+ | In <math>\triangle ABC</math> with <math>AB=AC,</math> point <math>D</math> lies strictly between <math>A</math> and <math>C</math> on side <math>\overline{AC},</math> and point <math>E</math> lies strictly between <math>A</math> and <math>B</math> on side <math>\overline{AB}</math> such that <math>AE=ED=DB=BC.</math> The degree measure of <math>\angle ABC</math> is <math>\tfrac{m}{n},</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n.</math> | ||
Revision as of 16:27, 12 March 2020
2020 AIME I (Answer Key) | AoPS Contest Collections | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |
Contents
Problem 1
In with point lies strictly between and on side and point lies strictly between and on side such that The degree measure of is where and are relatively prime positive integers. Find
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
2020 AIME I (Problems • Answer Key • Resources) | ||
Preceded by 2019 AIME II |
Followed by 2020 AIME II | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.