Difference between revisions of "2020 AIME I Problems/Problem 8"

(Solution 2 (Complex))
m (Video Solution with Motion in Python)
(9 intermediate revisions by 7 users not shown)
Line 1: Line 1:
Note: Please do not post problems here until after the AIME.
 
  
 
== Problem ==
 
== Problem ==
Line 5: Line 4:
  
 
== Solution 1 (Coordinates) ==
 
== Solution 1 (Coordinates) ==
 +
<asy>
 +
size(8cm);
 +
pair O, A, B, C, D, F, G, P, X;
 +
O = (0, 0);
 +
A = (5, 0);
 +
X = (8, 0);
 +
P = (5, 5 / sqrt(3));
 +
B = rotate(-120, A) * ((O + A) / 2);
 +
C = rotate(-120, B) * ((A + B) / 2);
 +
D = rotate(-120, C) * ((B + C) / 2);
 +
F = rotate(-120, D) * ((C + D) / 2);
 +
G = rotate(-120, F) * ((D + F) / 2);
 +
draw(O -- A -- B -- C -- D -- F -- G);
 +
draw(A -- X, dashed);
 +
markscalefactor = 0.05;
 +
path angle = anglemark(X, A, B);
 +
draw(angle);
 +
 +
dot(P);
 +
dot(O);
 +
 +
label("$O$", O, W);
 +
label("$P$", P, E);
 +
label("$60^\circ$", angle, ENE*3);
 +
</asy>
 +
 
We plot this on the coordinate grid with point <math>O</math> as the origin. We will keep a tally of the x-coordinate and y-coordinate separately.
 
We plot this on the coordinate grid with point <math>O</math> as the origin. We will keep a tally of the x-coordinate and y-coordinate separately.
  
Line 25: Line 50:
  
 
== Solution 2 (Complex) ==
 
== Solution 2 (Complex) ==
We put the ant in the complex plane, with its first move going in the positive real direction.
+
We place the ant at the origin of the complex plane with its first move being in the positive real direction. Then the ant's journey can be represented as the infinite series
Take
+
<cmath>5\left(1 + \frac{e^{\frac{i\pi}{3}}}{2} + \left(\frac{e^{\frac{i\pi}{3}}}{2}\right)^2 + \cdots\right)</cmath>
<cmath>|\sum_{k=0}^{\infty} (5\frac{e^{k\pi i / 3}}{2^k})|^2</cmath>
+
Using the formula for an infinite geometric series, this is equal to
and this is an infinite geometric series. Summing using <math>\frac{a}{1-r}</math> gives <math>\boxed{103}.</math> ~awang11
+
<cmath>\frac{5}{1 - \frac12e^{\frac{i\pi}{3}}} = \frac{5}{1 - \frac{1 + i\sqrt{3}}{4}} = \frac{20}{3 - i\sqrt{3}} = 5 + \frac{5i\sqrt{3}}{3}</cmath>
== Solution 3 (Solution 1 faster) ==
+
We are looking for the square of the modulus of this value:
The ant goes in the opposite direction every <math>3</math> moves, going <math>1/2^=1/8</math> the distance backwards. Using geometric series, he travels <math>1-1/8+1/64-1/512...=(7/8)(1+1/64+1/4096...)=(7/8)(64/63)=8/9</math> the distance of the first three moves over infinity moves. Now, we use coordinates meaning <math>(5+5/4-5/8, 0+5\sqrt3/4+5\sqrt3/8)</math> or <math>(45/8, 15\sqrt3/8)</math>. Multiplying these by <math>8/9</math>, we get <math>(5, 5\sqrt3/3)</math> <math>\implies</math> <math>\boxed{103}</math> .
+
<cmath>\left|\frac{5 + 5i\sqrt{3}}{3}\right|^2 = 25 + \frac{25}{3} = \frac{100}{3}</cmath>
 +
so the answer is <math>100 + 3 = \boxed{103}</math>.
 +
 
 +
== Solution 3 (Solution 1 Faster) ==
 +
The ant goes in the opposite direction every <math>3</math> moves, going <math>(1/2)^3=1/8</math> the distance backwards. Using geometric series, he travels <math>1-1/8+1/64-1/512...=(7/8)(1+1/64+1/4096...)=(7/8)(64/63)=8/9</math> the distance of the first three moves over infinity moves. Now, we use coordinates meaning <math>(5+5/4-5/8, 0+5\sqrt3/4+5\sqrt3/8)</math> or <math>(45/8, 15\sqrt3/8)</math>. Multiplying these by <math>8/9</math>, we get <math>(5, 5\sqrt3/3)</math> <math>\implies</math> <math>\boxed{103}</math> .
  
 
~Lcz
 
~Lcz
 +
 +
==Solution 4 (Official MAA 1)==
 +
Suppose that the bug starts at the origin <math>(0,0)</math> and travels a distance of <math>a</math> units due east on the first day, and that there is a real number <math>r</math> with <math>0<r < 1</math> such that each day after the first, the bug walks <math>r</math> times as far as the previous day. On day <math>n</math>, the bug travels along the vector <math>\pmb v_{n}</math> that has magnitude <math>ar^{n-1}</math> and direction <math>\langle\cos(n\cdot 60^\circ),\sin(n\cdot 60^\circ)\rangle</math>. Then <math>P</math> is the terminal point of the infinite sum of the vectors <math>\pmb v_{1}+\pmb v_{2}+\pmb v_3+\cdots</math>. The <math>x</math>-coordinate of this sum is
 +
<cmath>a\big(\!\cos0^\circ+r\cos60^\circ + r^{2}\cos120^\circ+r^{3}\cos180^\circ+r^{4}\cos240^\circ</cmath>
 +
<cmath>+r^{5}\cos300^\circ+r^{6}\cos360^\circ+\cdots\big).</cmath>
 +
Because the angles repeat after 6 terms, this sum is equal to
 +
<cmath>aS(1+r^{6}+r^{12}+r^{18}+\cdots)=\frac{aS}{1-r^{6}},</cmath>
 +
where
 +
<cmath>S=\cos0^\circ+r\cos60^\circ + r^{2}\cos120^\circ+r^{3}\cos180^\circ+r^{4}\cos240^\circ+ r^{5}\cos300^\circ.</cmath>
 +
Similarly, the <math>y</math>-coordinate of <math>P</math> will be <math>{\frac{aT}{1-r^{6}}}</math>, where
 +
<cmath>T=\sin0^\circ+r\sin60^\circ + r^{2}\sin120^\circ+r^{3}\sin180^\circ+r^{4}\sin240^\circ+ r^{5}\sin300^\circ.</cmath>In this case <math>r=\frac12</math> and <math>a = 5</math>, so
 +
<cmath>S=1+\frac14-\frac18-\frac18-\frac1{32}+\frac1{64}=\frac{63}{64},</cmath>
 +
<cmath>T=0+\frac{\sqrt3}4+\frac{\sqrt3}8+0-\frac{\sqrt3}{32}-\frac{\sqrt3}{64}=\frac{21\sqrt3}{64},</cmath>and the coordinates of <math>P</math> are
 +
<cmath>\left(\frac{5S}{1-\frac1{64}}, \frac{5T}{1-\frac1{64}}\right)=\left(5,\frac{5\sqrt3}{3}\right).</cmath>Thus the square of the distance from the origin to <math>P</math> is <math>25+\frac{25}3=\frac{100}3</math>. The requested sum is <math>100+3=103</math>.
 +
 +
==Solution 5 (Official MAA 2)==
 +
Let point <math>O</math> be the origin in the complex plane. Point <math>P</math> is the complex sum <math>5(1+z+z^2+\cdots) = \frac{5}{1-z}</math>, where <math>z=\frac{1+i\sqrt3}4</math>. The distance squared is<cmath> {OP}^2=\left|\frac5{1-\frac{1+i\sqrt3}4}\right|^{2}=
 +
\frac{(4\cdot5)^2}{\left|4-(1+i\sqrt3)\right|^2}=\frac{400}{9+3}=\frac{100}3.</cmath>
 +
 +
==Video Solution with Motion in Python ==
 +
https://youtu.be/RrMsMw_ZrBU
 +
 +
Moving Bug in AIME solution with python turtle scripts
 +
 +
== Video Solution ==
 +
 +
https://www.youtube.com/watch?v=BtMBSoZ3cMQ
 +
 +
-avn
  
 
==See Also==
 
==See Also==

Revision as of 18:22, 11 June 2021

Problem

A bug walks all day and sleeps all night. On the first day, it starts at point $O,$ faces east, and walks a distance of $5$ units due east. Each night the bug rotates $60^\circ$ counterclockwise. Each day it walks in this new direction half as far as it walked the previous day. The bug gets arbitrarily close to the point $P.$ Then $OP^2=\tfrac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

Solution 1 (Coordinates)

[asy] size(8cm); pair O, A, B, C, D, F, G, P, X; O = (0, 0); A = (5, 0); X = (8, 0); P = (5, 5 / sqrt(3)); B = rotate(-120, A) * ((O + A) / 2); C = rotate(-120, B) * ((A + B) / 2); D = rotate(-120, C) * ((B + C) / 2); F = rotate(-120, D) * ((C + D) / 2); G = rotate(-120, F) * ((D + F) / 2); draw(O -- A -- B -- C -- D -- F -- G); draw(A -- X, dashed); markscalefactor = 0.05; path angle = anglemark(X, A, B); draw(angle);  dot(P); dot(O);  label("$O$", O, W); label("$P$", P, E); label("$60^\circ$", angle, ENE*3); [/asy]

We plot this on the coordinate grid with point $O$ as the origin. We will keep a tally of the x-coordinate and y-coordinate separately.

First move: The ant moves right $5$. Second move: We use properties of a $30-60-90$ triangle to get $\frac{5}{4}$ right, $\frac{5\sqrt{3}}{4}$ up. Third move: $\frac{5}{8}$ left, $\frac{5\sqrt{3}}{8}$ up. Fourth move: $\frac{5}{8}$ left. Fifth move: $\frac{5}{32}$ left, $\frac{5\sqrt{3}}{32}$ down. Sixth move: $\frac{5}{64}$ right, $\frac{5\sqrt{3}}{64}$ down.

Total of x-coordinate: $5 + \frac{5}{4} - \frac{5}{8} - \frac{5}{8}  - \frac{5}{32} + \frac{5}{64} = \frac{315}{64}$. Total of y-coordinate: $0 + \frac{5\sqrt{3}}{4} + \frac{5\sqrt{3}}{8} + 0 - \frac{5\sqrt{3}}{32} - \frac{5\sqrt{3}}{64} = \frac{105\sqrt{3}}{64}$.

After this cycle of six moves, all moves repeat with a factor of $(\frac{1}{2})^6 = \frac{1}{64}$. Using the formula for a geometric series, multiplying each sequence by $\frac{1}{1-\frac{1}{64}} = \frac{64}{63}$ will give us the point $P$.

$\frac{315}{64} \cdot \frac{64}{63} = 5$, $\frac{105\sqrt{3}}{64} \cdot \frac{64}{63} = \frac{5\sqrt{3}}{3}$. Therefore, the coordinates of point $P$ are $(5,\frac{5\sqrt{3}}{3})$, so using the Pythagorean Theorem, $OP^2 = \frac{100}{3}$, for an answer of $\boxed{103}$.

-molocyxu

Solution 2 (Complex)

We place the ant at the origin of the complex plane with its first move being in the positive real direction. Then the ant's journey can be represented as the infinite series \[5\left(1 + \frac{e^{\frac{i\pi}{3}}}{2} + \left(\frac{e^{\frac{i\pi}{3}}}{2}\right)^2 + \cdots\right)\] Using the formula for an infinite geometric series, this is equal to \[\frac{5}{1 - \frac12e^{\frac{i\pi}{3}}} = \frac{5}{1 - \frac{1 + i\sqrt{3}}{4}} = \frac{20}{3 - i\sqrt{3}} = 5 + \frac{5i\sqrt{3}}{3}\] We are looking for the square of the modulus of this value: \[\left|\frac{5 + 5i\sqrt{3}}{3}\right|^2 = 25 + \frac{25}{3} = \frac{100}{3}\] so the answer is $100 + 3 = \boxed{103}$.

Solution 3 (Solution 1 Faster)

The ant goes in the opposite direction every $3$ moves, going $(1/2)^3=1/8$ the distance backwards. Using geometric series, he travels $1-1/8+1/64-1/512...=(7/8)(1+1/64+1/4096...)=(7/8)(64/63)=8/9$ the distance of the first three moves over infinity moves. Now, we use coordinates meaning $(5+5/4-5/8, 0+5\sqrt3/4+5\sqrt3/8)$ or $(45/8, 15\sqrt3/8)$. Multiplying these by $8/9$, we get $(5, 5\sqrt3/3)$ $\implies$ $\boxed{103}$ .

~Lcz

Solution 4 (Official MAA 1)

Suppose that the bug starts at the origin $(0,0)$ and travels a distance of $a$ units due east on the first day, and that there is a real number $r$ with $0<r < 1$ such that each day after the first, the bug walks $r$ times as far as the previous day. On day $n$, the bug travels along the vector $\pmb v_{n}$ that has magnitude $ar^{n-1}$ and direction $\langle\cos(n\cdot 60^\circ),\sin(n\cdot 60^\circ)\rangle$. Then $P$ is the terminal point of the infinite sum of the vectors $\pmb v_{1}+\pmb v_{2}+\pmb v_3+\cdots$. The $x$-coordinate of this sum is \[a\big(\!\cos0^\circ+r\cos60^\circ + r^{2}\cos120^\circ+r^{3}\cos180^\circ+r^{4}\cos240^\circ\] \[+r^{5}\cos300^\circ+r^{6}\cos360^\circ+\cdots\big).\] Because the angles repeat after 6 terms, this sum is equal to \[aS(1+r^{6}+r^{12}+r^{18}+\cdots)=\frac{aS}{1-r^{6}},\] where \[S=\cos0^\circ+r\cos60^\circ + r^{2}\cos120^\circ+r^{3}\cos180^\circ+r^{4}\cos240^\circ+ r^{5}\cos300^\circ.\] Similarly, the $y$-coordinate of $P$ will be ${\frac{aT}{1-r^{6}}}$, where \[T=\sin0^\circ+r\sin60^\circ + r^{2}\sin120^\circ+r^{3}\sin180^\circ+r^{4}\sin240^\circ+ r^{5}\sin300^\circ.\]In this case $r=\frac12$ and $a = 5$, so \[S=1+\frac14-\frac18-\frac18-\frac1{32}+\frac1{64}=\frac{63}{64},\] \[T=0+\frac{\sqrt3}4+\frac{\sqrt3}8+0-\frac{\sqrt3}{32}-\frac{\sqrt3}{64}=\frac{21\sqrt3}{64},\]and the coordinates of $P$ are \[\left(\frac{5S}{1-\frac1{64}}, \frac{5T}{1-\frac1{64}}\right)=\left(5,\frac{5\sqrt3}{3}\right).\]Thus the square of the distance from the origin to $P$ is $25+\frac{25}3=\frac{100}3$. The requested sum is $100+3=103$.

Solution 5 (Official MAA 2)

Let point $O$ be the origin in the complex plane. Point $P$ is the complex sum $5(1+z+z^2+\cdots) = \frac{5}{1-z}$, where $z=\frac{1+i\sqrt3}4$. The distance squared is\[{OP}^2=\left|\frac5{1-\frac{1+i\sqrt3}4}\right|^{2}= \frac{(4\cdot5)^2}{\left|4-(1+i\sqrt3)\right|^2}=\frac{400}{9+3}=\frac{100}3.\]

Video Solution with Motion in Python

https://youtu.be/RrMsMw_ZrBU

Moving Bug in AIME solution with python turtle scripts

Video Solution

https://www.youtube.com/watch?v=BtMBSoZ3cMQ

-avn

See Also

2020 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS