# Difference between revisions of "2020 AIME I Problems/Problem 9"

Note: Please do not post problems here until after the AIME.

## Solution

First, prime factorize $20^9$ as $2^{18} \cdot 5^9$. Denote $a_1$ as $2^{b_1} \cdot 5^{c_1}$, $a_2$ as $2^{b_2} \cdot 5^{c_2}$, and $a_3$ as $2^{b_3} \cdot 5^{c_3}$.

In order for $a_1$ to divide $a_2$, and for $a_2$ to divide $a_3$, $b_1<=b_2<=b_3$, and $c_1<=c_2<=c_3$. We will consider each case separately. Note that the total amount of possibilities is $190^3$, as there are $(18+1)(9+1)=190$ choices for each factor.

We notice that if we add $1$ to $b_2$ and $2$ to $b_3$, then we can reach the stronger inequality $b_1. Therefore, if we pick $3$ integers from $0$ to $20$, they will correspond to a unique solution, forming a 1-1 correspondence. The amount of solutions to this inequality is $\dbinom{21}{3}$.

The case for $c_1$,$c_2$, and $c_3$ proceeds similarly for a result of $\dbinom{12}{3}$. Therefore, the probability of choosing three such factors is $$\frac{\dbinom{21}{3} \cdot \dbinom{12}{3}}{190^3}.$$ Simplification gives $\frac{77}{1805}$, and therefore the answer is $\boxed{77}$.

-molocyxu