Difference between revisions of "2022 AIME II Problems/Problem 14"

m (Solution)
(Solution)
Line 7: Line 7:
 
Notice that we must have <math>a = 1</math>, otherwise <math>1</math> cent stamp cannot be represented. At least <math>b-1</math> numbers of <math>1</math> cent stamps are needed to represent the values less than <math>b</math>. Using at most <math>c-1</math> stamps of value <math>1</math> and <math>b</math>, it can have all the values from <math>1</math> to <math>c-1</math> cents. Plus <math>\lfloor \frac{999}{c} \rfloor</math> stamps of value <math>c</math>, every value up to <math>1000</math> can be represented. Therefore using <math>\lfloor \frac{999}{c} \rfloor</math> stamps of value <math>c</math>, <math>\lfloor \frac{c-1}{b} \rfloor</math> stamps of value <math>b</math>, and <math>b-1</math> stamps of value <math>1</math>, all values up to <math>1000</math> can be represented in sub-collections, while minimizing the number of stamps.
 
Notice that we must have <math>a = 1</math>, otherwise <math>1</math> cent stamp cannot be represented. At least <math>b-1</math> numbers of <math>1</math> cent stamps are needed to represent the values less than <math>b</math>. Using at most <math>c-1</math> stamps of value <math>1</math> and <math>b</math>, it can have all the values from <math>1</math> to <math>c-1</math> cents. Plus <math>\lfloor \frac{999}{c} \rfloor</math> stamps of value <math>c</math>, every value up to <math>1000</math> can be represented. Therefore using <math>\lfloor \frac{999}{c} \rfloor</math> stamps of value <math>c</math>, <math>\lfloor \frac{c-1}{b} \rfloor</math> stamps of value <math>b</math>, and <math>b-1</math> stamps of value <math>1</math>, all values up to <math>1000</math> can be represented in sub-collections, while minimizing the number of stamps.
  
So, <math>f(a, b, c) = \lfloor \frac{999}{c} \rfloor + \lfloor \frac{c-1}{b} \rfloor + b-1</math>, <math>b<c-1</math>
+
So, <math>f(a, b, c) = \lfloor \frac{999}{c} \rfloor + \lfloor \frac{c-1}{b} \rfloor + b-1</math>.
  
 
<math>\lfloor \frac{999}{c} \rfloor + \lfloor \frac{c-1}{b} \rfloor + b-1 = 97</math>. We can get the answer by solving this equation.
 
<math>\lfloor \frac{999}{c} \rfloor + \lfloor \frac{c-1}{b} \rfloor + b-1 = 97</math>. We can get the answer by solving this equation.
Line 30: Line 30:
  
 
  <math>{Case 2.2:}</math> <math>c = 87</math>, <math>\lfloor \frac{999}{87} \rfloor + \lfloor \frac{86}{b} \rfloor + b-1 = 97</math>
 
  <math>{Case 2.2:}</math> <math>c = 87</math>, <math>\lfloor \frac{999}{87} \rfloor + \lfloor \frac{86}{b} \rfloor + b-1 = 97</math>
  <math>\lfloor \frac{86}{b} \rfloor + b = 87</math>, <math>b=86</math> or <math>1</math>, neither values satisfy <math>a < b < c-1</math>, no solution
+
  <math>\lfloor \frac{86}{b} \rfloor + b = 87</math>, <math>b=86</math> or <math>1</math>. We cannot have <math>b=1</math> since it doesn't satisfy <math>a<b</math>, and note that if
 +
<math>b=86</math> we can have 10 coins of value <math>c</math>, 1 of <math>b</math>, and 85 of <math>a</math> for a total of 96 coins and still be able to make every value
 +
from 1 to 1000. Thus <math>c=87</math> yields no solution.
  
 
  <math>{Case 2.3:}</math> <math>c = 88</math>, <math>\lfloor \frac{999}{88} \rfloor + \lfloor \frac{87}{b} \rfloor + b-1 = 97</math>
 
  <math>{Case 2.3:}</math> <math>c = 88</math>, <math>\lfloor \frac{999}{88} \rfloor + \lfloor \frac{87}{b} \rfloor + b-1 = 97</math>
Line 41: Line 43:
  
 
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]
 
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]
 +
~edited by bobjoebilly
  
 
==Video Solution==
 
==Video Solution==

Revision as of 17:01, 3 July 2023

Problem

For positive integers $a$, $b$, and $c$ with $a < b < c$, consider collections of postage stamps in denominations $a$, $b$, and $c$ cents that contain at least one stamp of each denomination. If there exists such a collection that contains sub-collections worth every whole number of cents up to $1000$ cents, let $f(a, b, c)$ be the minimum number of stamps in such a collection. Find the sum of the three least values of $c$ such that $f(a, b, c) = 97$ for some choice of $a$ and $b$.

Solution

Notice that we must have $a = 1$, otherwise $1$ cent stamp cannot be represented. At least $b-1$ numbers of $1$ cent stamps are needed to represent the values less than $b$. Using at most $c-1$ stamps of value $1$ and $b$, it can have all the values from $1$ to $c-1$ cents. Plus $\lfloor \frac{999}{c} \rfloor$ stamps of value $c$, every value up to $1000$ can be represented. Therefore using $\lfloor \frac{999}{c} \rfloor$ stamps of value $c$, $\lfloor \frac{c-1}{b} \rfloor$ stamps of value $b$, and $b-1$ stamps of value $1$, all values up to $1000$ can be represented in sub-collections, while minimizing the number of stamps.

So, $f(a, b, c) = \lfloor \frac{999}{c} \rfloor + \lfloor \frac{c-1}{b} \rfloor + b-1$.

$\lfloor \frac{999}{c} \rfloor + \lfloor \frac{c-1}{b} \rfloor + b-1 = 97$. We can get the answer by solving this equation.

$c > \lfloor \frac{c-1}{b} \rfloor + b-1$

$\frac{999}{c} + c > \lfloor \frac{999}{c} \rfloor + \lfloor \frac{c-1}{b} \rfloor + b-1 = 97$

$c^2 - 97c + 999 > 0$, $c > 85.3$ or $c < 11.7$

$\lfloor \frac{999}{c} \rfloor + \lfloor \frac{c-1}{b} \rfloor + b-1 > \frac{999}{c}$

$97 > \frac{999}{c}$, $c>10.3$

${Case 1:}$ For $10.3 < c < 11.7$, $c = 11$, $\lfloor \frac{999}{11} \rfloor + \lfloor \frac{10}{b} \rfloor + b-1 = 97$
$\lfloor \frac{10}{b} \rfloor + b = 8$, $b=7$
${Case 2:}$ For $c>85.3$, 
${Case 2.1:}$ $c = 86$, $\lfloor \frac{999}{86} \rfloor + \lfloor \frac{85}{b} \rfloor + b-1 = 97$
$\lfloor \frac{85}{b} \rfloor + b = 87$, $b=87 > c$, no solution
${Case 2.2:}$ $c = 87$, $\lfloor \frac{999}{87} \rfloor + \lfloor \frac{86}{b} \rfloor + b-1 = 97$
$\lfloor \frac{86}{b} \rfloor + b = 87$, $b=86$ or $1$. We cannot have $b=1$ since it doesn't satisfy $a<b$, and note that if 
$b=86$ we can have 10 coins of value $c$, 1 of $b$, and 85 of $a$ for a total of 96 coins and still be able to make every value 
from 1 to 1000. Thus $c=87$ yields no solution.
${Case 2.3:}$ $c = 88$, $\lfloor \frac{999}{88} \rfloor + \lfloor \frac{87}{b} \rfloor + b-1 = 97$
$\lfloor \frac{87}{b} \rfloor + b = 87$, $b=86$
${Case 2.4:}$ $c = 89$, $\lfloor \frac{999}{89} \rfloor + \lfloor \frac{88}{b} \rfloor + b-1 = 97$
$\lfloor \frac{88}{b} \rfloor + b = 87$, $b=86$

The $3$ least values of $c$ are $11$, $88$, $89$. $11 + 88+ 89 = \boxed{\textbf{188}}$

~isabelchen ~edited by bobjoebilly

Video Solution

https://youtu.be/jptMMVCuj34

~MathProblemSolvingSkills.com


See Also

2022 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png