Difference between revisions of "2022 AIME II Problems/Problem 7"

(Alternative Finish)
 
(43 intermediate revisions by 14 users not shown)
Line 2: Line 2:
  
 
A circle with radius <math>6</math> is externally tangent to a circle with radius <math>24</math>. Find the area of the triangular region bounded by the three common tangent lines of these two circles.
 
A circle with radius <math>6</math> is externally tangent to a circle with radius <math>24</math>. Find the area of the triangular region bounded by the three common tangent lines of these two circles.
 +
 +
==Solution 1==
 +
 +
<asy>
 +
//Created by isabelchen
 +
 +
size(12cm, 12cm);
 +
 +
draw(circle((0,0),24));
 +
draw(circle((30,0),6));
 +
draw((72/5, 96/5) -- (40,0));
 +
draw((72/5, -96/5) -- (40,0));
 +
draw((24, 12) -- (24, -12));
 +
draw((0, 0) -- (40, 0));
 +
draw((72/5, 96/5) -- (0,0));
 +
draw((168/5, 24/5) -- (30,0));
 +
draw((54/5, 72/5) -- (30,0));
 +
 +
dot((72/5, 96/5));
 +
label("$A$",(72/5, 96/5),NE);
 +
dot((168/5, 24/5));
 +
label("$B$",(168/5, 24/5),NE);
 +
dot((24,0));
 +
label("$C$",(24,0),NW);
 +
dot((40, 0));
 +
label("$D$",(40, 0),NE);
 +
dot((24, 12));
 +
label("$E$",(24, 12),NE);
 +
dot((24, -12));
 +
label("$F$",(24, -12),SE);
 +
dot((54/5, 72/5));
 +
label("$G$",(54/5, 72/5),NW);
 +
dot((0, 0));
 +
label("$O_1$",(0, 0),S);
 +
dot((30, 0));
 +
label("$O_2$",(30, 0),S);
 +
 +
</asy>
 +
 +
<math>r_1 = O_1A = 24</math>, <math>r_2 = O_2B = 6</math>, <math>AG = BO_2 = r_2 = 6</math>, <math>O_1G = r_1 - r_2 = 24 - 6 = 18</math>, <math>O_1O_2 = r_1 + r_2 = 30</math>
 +
 +
<math>\triangle O_2BD \sim \triangle O_1GO_2</math>, <math>\frac{O_2D}{O_1O_2} = \frac{BO_2}{GO_1}</math>,  <math>\frac{O_2D}{30} = \frac{6}{18}</math>, <math>O_2D = 10</math>
 +
 +
<math>CD = O_2D + r_2 = 10 + 6 = 16</math>,
 +
 +
<math>EF = 2EC = EA + EB = AB = GO_2 = \sqrt{(O_1O_2)^2-(O_1G)^2} = \sqrt{30^2-18^2} = 24</math>
 +
 +
<math>DEF = \frac12 \cdot EF \cdot CD = \frac12 \cdot 24 \cdot 16 = \boxed{\textbf{192}}</math>
 +
 +
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]
 +
 +
===Alternative Finish===
 +
Note that <math>\triangle{O_1 O_2 G} \sim \triangle{O_1 D A}</math> by AA similarity. Setting up the ratio <math>\frac{18}{24}=\frac{24}{AB+8}</math> and then substituting <math>AB</math> with our known values will lead us to the same solution.
 +
 +
'''mathboy282'''
 +
 +
==Solution 2==
 +
Let the center of the circle with radius <math>6</math> be labeled <math>A</math> and the center of the circle with radius <math>24</math> be labeled <math>B</math>. Drop perpendiculars on the same side of line <math>AB</math> from <math>A</math> and <math>B</math> to each of the tangents at points <math>C</math> and <math>D</math>, respectively. Then, let line <math>AB</math> intersect the two diagonal tangents at point <math>P</math>. Since <math>\triangle{APC} \sim \triangle{BPD}</math>, we have <cmath>\frac{AP}{AP+30}=\frac14 \implies AP=10.</cmath> Next, throw everything on a coordinate plane with <math>A=(0, 0)</math> and <math>B = (30, 0)</math>. Then, <math>P = (-10, 0)</math>, and if <math>C = (x, y)</math>, we have <cmath>(x+10)^2+y^2=64,</cmath> <cmath>x^2+y^2=36.</cmath> Combining these and solving, we get <math>(x, y)=\left(-\frac{18}5, \frac{24}5\right)</math>. Notice now that <math>P</math>, <math>C</math>, and the intersections of the lines <math>x=6</math> (the vertical tangent) with the tangent containing these points are collinear, and thus every slope between a pair of points will have the same slope, which in this case is <math>\frac{-\frac{18}5+10}{\frac{24}5}=\frac34</math>. Thus, the other two vertices of the desired triangle are <math>(6, 12)</math> and <math>(6, -12)</math>. By the Shoelace Formula, the area of a triangle with coordinates <math>(-10, 0)</math>, <math>(6, 12)</math>, and <math>(6, -12)</math> is <cmath>\frac12|-120-0-72-72+0-120|=\boxed{\textbf{192}}.</cmath>
 +
 +
~A1001
 +
 +
==Solution 3==
 +
(Taking diagram names from Solution 1. Also say the line that passes through <math>O_1</math> and is parallel to line EF, call the points of intersection of that line and the circumference of circle <math>O_1</math> points <math>X</math> and <math>Y</math>.)
 +
 +
First notice that <math>DO_1</math> is a straight line because <math>DXY</math> is an isosceles triangle(or you can realize it by symmetry). That means, because <math>DO_1</math> is a straight line, so angle <math>BDO_2</math> = angle <math>ADO_1,</math> triangle <math>ADO_1</math> is similar to triangle <math>BDO_2</math>. Also name <math>DO_2 = x</math>. By our similar triangles, <math>\frac{BO_2}{AO_1} = \frac{1}{4} = \frac{x}{x+30}</math>. Solving we get <math>x = 10 = DO_2</math>. Pythagorean Theorem on triangle <math>DBO_2</math> shows <math>BD = \sqrt{10^2 - 6^2} = 8</math>. By similar triangles, <math>DA = 4 \cdot 8 = 32</math> which means <math>AB = DA - DB = 32 - 8 = 24</math>. Because <math>BE = CE = AE, AB = 2 \cdot BE = 24</math>. <math>BE = 12,</math> which means <math>CE = 12</math>. <math>CD = DO_2</math>(its value found earlier in this solution) + <math>CO_2</math> (<math>O_2</math> 's radius) <math>= 10 + 6 = 16</math>. The area of <math>DEF</math> is <math>\frac{1}{2} \cdot CD \cdot EF = CD \cdot CE</math> (because <math>CE</math> is <math>\tfrac{1}{2}</math> of <math>EF</math>) <math>= 16 \cdot 12 = 192</math>.
 +
 +
~Professor Rat's solution, added by @heheman and edited by @megahertz13 and @Yrock for <math>\LaTeX</math>.
 +
 +
==Solution 4 (similar to solution 1)==
 +
 +
<asy>
 +
//Created by isabelchen and edited by afly
 +
 +
size(12cm, 12cm);
 +
 +
draw(circle((0,0),24));
 +
draw(circle((30,0),6));
 +
draw((72/5, 96/5) -- (40,0));
 +
draw((72/5, -96/5) -- (40,0));
 +
draw((24, 12) -- (24, -12));
 +
draw((0, 0) -- (40, 0));
 +
draw((72/5, 96/5) -- (0,0));
 +
draw((168/5, 24/5) -- (30,0));
 +
draw((54/5, 72/5) -- (30,0));
 +
draw((30,0)--(30,15/2));
 +
 +
dot((72/5, 96/5));
 +
label("$A$",(72/5, 96/5),NE);
 +
dot((168/5, 24/5));
 +
label("$B$",(168/5, 24/5),NE);
 +
dot((24,0));
 +
label("$C$",(24,0),NW);
 +
dot((40, 0));
 +
label("$D$",(40, 0),NE);
 +
dot((24, 12));
 +
label("$E$",(24, 12),NE);
 +
dot((24, -12));
 +
label("$F$",(24, -12),SE);
 +
dot((54/5, 72/5));
 +
label("$G$",(54/5, 72/5),NW);
 +
dot((0, 0));
 +
label("$O_1$",(0, 0),S);
 +
dot((30, 0));
 +
label("$O_2$",(30, 0),S);
 +
dot((30,15/2));
 +
label("$H$",(30,15/2),N);
 +
 +
label("$x$",(30,0)--(40,0),N);
 +
</asy>
 +
 +
First, we want to find <math>O_2D</math>. We know that <math>\angle O_1AD = \angle O_2BD = 90^{\circ}</math>, so by AA similarity, <math>\triangle O_1AD \sim \triangle O_2BD</math>. We want to find the length of <math>x</math>, and using the similar triangles, we write an equation: <math>\frac{30 + x}{4} = x</math>. Solving, we get <math>x=10</math>. Therefore, <math>CD = 10 + 6 = 16</math>. Next, we find that using AA similarity, <math>\triangle O_2BD \sim \triangle HO_2D \sim \triangle ECD</math> and they are 3-4-5 triangles. We can quickly compute <math>EF = 2EC = 2 \cdot \left( \frac{3}{4} \cdot 16 \right) = 2 \cdot 12 = 24</math>. Therefore, the area is <math>\frac{1}{2} \cdot 16 \cdot 24 = \boxed{192}</math>.
 +
 +
~[https://aops.com/wiki/index.php/User:Afly afly]
  
 
==Video Solution (Mathematical Dexterity)==
 
==Video Solution (Mathematical Dexterity)==
 
https://www.youtube.com/watch?v=7NGkVu0kE08
 
https://www.youtube.com/watch?v=7NGkVu0kE08
 +
 +
==Video Solution(The Power of Logic)==
 +
https://youtu.be/YAaiX_58Y7U
  
 
==See Also==
 
==See Also==
 
{{AIME box|year=2022|n=II|num-b=6|num-a=8}}
 
{{AIME box|year=2022|n=II|num-b=6|num-a=8}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 20:43, 1 January 2024

Problem

A circle with radius $6$ is externally tangent to a circle with radius $24$. Find the area of the triangular region bounded by the three common tangent lines of these two circles.

Solution 1

[asy] //Created by isabelchen  size(12cm, 12cm);  draw(circle((0,0),24)); draw(circle((30,0),6)); draw((72/5, 96/5) -- (40,0)); draw((72/5, -96/5) -- (40,0)); draw((24, 12) -- (24, -12)); draw((0, 0) -- (40, 0)); draw((72/5, 96/5) -- (0,0)); draw((168/5, 24/5) -- (30,0)); draw((54/5, 72/5) -- (30,0));  dot((72/5, 96/5)); label("$A$",(72/5, 96/5),NE); dot((168/5, 24/5)); label("$B$",(168/5, 24/5),NE); dot((24,0)); label("$C$",(24,0),NW); dot((40, 0)); label("$D$",(40, 0),NE); dot((24, 12)); label("$E$",(24, 12),NE); dot((24, -12)); label("$F$",(24, -12),SE); dot((54/5, 72/5)); label("$G$",(54/5, 72/5),NW); dot((0, 0)); label("$O_1$",(0, 0),S); dot((30, 0)); label("$O_2$",(30, 0),S);  [/asy]

$r_1 = O_1A = 24$, $r_2 = O_2B = 6$, $AG = BO_2 = r_2 = 6$, $O_1G = r_1 - r_2 = 24 - 6 = 18$, $O_1O_2 = r_1 + r_2 = 30$

$\triangle O_2BD \sim \triangle O_1GO_2$, $\frac{O_2D}{O_1O_2} = \frac{BO_2}{GO_1}$, $\frac{O_2D}{30} = \frac{6}{18}$, $O_2D = 10$

$CD = O_2D + r_2 = 10 + 6 = 16$,

$EF = 2EC = EA + EB = AB = GO_2 = \sqrt{(O_1O_2)^2-(O_1G)^2} = \sqrt{30^2-18^2} = 24$

$DEF = \frac12 \cdot EF \cdot CD = \frac12 \cdot 24 \cdot 16 = \boxed{\textbf{192}}$

~isabelchen

Alternative Finish

Note that $\triangle{O_1 O_2 G} \sim \triangle{O_1 D A}$ by AA similarity. Setting up the ratio $\frac{18}{24}=\frac{24}{AB+8}$ and then substituting $AB$ with our known values will lead us to the same solution.

mathboy282

Solution 2

Let the center of the circle with radius $6$ be labeled $A$ and the center of the circle with radius $24$ be labeled $B$. Drop perpendiculars on the same side of line $AB$ from $A$ and $B$ to each of the tangents at points $C$ and $D$, respectively. Then, let line $AB$ intersect the two diagonal tangents at point $P$. Since $\triangle{APC} \sim \triangle{BPD}$, we have \[\frac{AP}{AP+30}=\frac14 \implies AP=10.\] Next, throw everything on a coordinate plane with $A=(0, 0)$ and $B = (30, 0)$. Then, $P = (-10, 0)$, and if $C = (x, y)$, we have \[(x+10)^2+y^2=64,\] \[x^2+y^2=36.\] Combining these and solving, we get $(x, y)=\left(-\frac{18}5, \frac{24}5\right)$. Notice now that $P$, $C$, and the intersections of the lines $x=6$ (the vertical tangent) with the tangent containing these points are collinear, and thus every slope between a pair of points will have the same slope, which in this case is $\frac{-\frac{18}5+10}{\frac{24}5}=\frac34$. Thus, the other two vertices of the desired triangle are $(6, 12)$ and $(6, -12)$. By the Shoelace Formula, the area of a triangle with coordinates $(-10, 0)$, $(6, 12)$, and $(6, -12)$ is \[\frac12|-120-0-72-72+0-120|=\boxed{\textbf{192}}.\]

~A1001

Solution 3

(Taking diagram names from Solution 1. Also say the line that passes through $O_1$ and is parallel to line EF, call the points of intersection of that line and the circumference of circle $O_1$ points $X$ and $Y$.)

First notice that $DO_1$ is a straight line because $DXY$ is an isosceles triangle(or you can realize it by symmetry). That means, because $DO_1$ is a straight line, so angle $BDO_2$ = angle $ADO_1,$ triangle $ADO_1$ is similar to triangle $BDO_2$. Also name $DO_2 = x$. By our similar triangles, $\frac{BO_2}{AO_1} = \frac{1}{4} = \frac{x}{x+30}$. Solving we get $x = 10 = DO_2$. Pythagorean Theorem on triangle $DBO_2$ shows $BD = \sqrt{10^2 - 6^2} = 8$. By similar triangles, $DA = 4 \cdot 8 = 32$ which means $AB = DA - DB = 32 - 8 = 24$. Because $BE = CE = AE, AB = 2 \cdot BE = 24$. $BE = 12,$ which means $CE = 12$. $CD = DO_2$(its value found earlier in this solution) + $CO_2$ ($O_2$ 's radius) $= 10 + 6 = 16$. The area of $DEF$ is $\frac{1}{2} \cdot CD \cdot EF = CD \cdot CE$ (because $CE$ is $\tfrac{1}{2}$ of $EF$) $= 16 \cdot 12 = 192$.

~Professor Rat's solution, added by @heheman and edited by @megahertz13 and @Yrock for $\LaTeX$.

Solution 4 (similar to solution 1)

[asy] //Created by isabelchen and edited by afly  size(12cm, 12cm);  draw(circle((0,0),24)); draw(circle((30,0),6)); draw((72/5, 96/5) -- (40,0)); draw((72/5, -96/5) -- (40,0)); draw((24, 12) -- (24, -12)); draw((0, 0) -- (40, 0)); draw((72/5, 96/5) -- (0,0)); draw((168/5, 24/5) -- (30,0)); draw((54/5, 72/5) -- (30,0)); draw((30,0)--(30,15/2));  dot((72/5, 96/5)); label("$A$",(72/5, 96/5),NE); dot((168/5, 24/5)); label("$B$",(168/5, 24/5),NE); dot((24,0)); label("$C$",(24,0),NW); dot((40, 0)); label("$D$",(40, 0),NE); dot((24, 12)); label("$E$",(24, 12),NE); dot((24, -12)); label("$F$",(24, -12),SE); dot((54/5, 72/5)); label("$G$",(54/5, 72/5),NW); dot((0, 0)); label("$O_1$",(0, 0),S); dot((30, 0)); label("$O_2$",(30, 0),S); dot((30,15/2)); label("$H$",(30,15/2),N);  label("$x$",(30,0)--(40,0),N); [/asy]

First, we want to find $O_2D$. We know that $\angle O_1AD = \angle O_2BD = 90^{\circ}$, so by AA similarity, $\triangle O_1AD \sim \triangle O_2BD$. We want to find the length of $x$, and using the similar triangles, we write an equation: $\frac{30 + x}{4} = x$. Solving, we get $x=10$. Therefore, $CD = 10 + 6 = 16$. Next, we find that using AA similarity, $\triangle O_2BD \sim \triangle HO_2D \sim \triangle ECD$ and they are 3-4-5 triangles. We can quickly compute $EF = 2EC = 2 \cdot \left( \frac{3}{4} \cdot 16 \right) = 2 \cdot 12 = 24$. Therefore, the area is $\frac{1}{2} \cdot 16 \cdot 24 = \boxed{192}$.

~afly

Video Solution (Mathematical Dexterity)

https://www.youtube.com/watch?v=7NGkVu0kE08

Video Solution(The Power of Logic)

https://youtu.be/YAaiX_58Y7U

See Also

2022 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png