USAMTS Year 21 Round 3
by math154, Jan 13, 2010, 10:39 PM
Blah, hopefully perfect... http://www.usamts.org/Papers/Year21/Round3/10511-1263101054-solutions.pdf
My solution to #5
Edit: OK perfect blah.
My solution to #5
We are given that
, and
![\[ a_n = a_{n - 1} + \frac {c_{n - 1}}{n},\quad b_n = b_{n - 1} + \frac {a_{n - 1}}{n},\quad c_n = c_{n - 1} + \frac {b_{n - 1}}{n}.\]](//latex.artofproblemsolving.com/0/5/8/058250c6144d6a5c89b760239218d8412910e35e.png)
First we plug in
into the recursions for
and find that
. Letting
![\[ x_n = \sqrt {3n}\left(a_n - \frac {n + 1}{3}\right)\]](//latex.artofproblemsolving.com/1/f/1/1f1e216ab2d7852475203f4dd48d7678efa71f6e.png)
and so on, we have
and
. Then we now want to prove that, for
,
![\[ \left|a_n - \frac {n + 1}{3}\right| < \frac {2}{\sqrt {3n}}\Longleftrightarrow\left|\sqrt {3n}\left(a_n - \frac {n + 1}{3}\right)\right| < 2\Longleftrightarrow|x_n| < 2.\]](//latex.artofproblemsolving.com/b/3/9/b393cfd927727fe5bdbde1ff9ac338787e3f7416.png)
First note that
![\[ x_n = \sqrt {3n}\left(a_n - \frac {n + 1}{3}\right)\Longleftrightarrow a_n = \frac {x_n}{\sqrt {3n}} + \frac {n + 1}{3}.\]](//latex.artofproblemsolving.com/6/6/2/66211e234e352fc1f634f7b73bba8802a6888d09.png)
(Cyclic relations hold as well.) Hence the original recursions can be rewritten as
Summing the three new recurrence relations up, we have
![\[ x_n + y_n + z_n = \left(\frac {\sqrt {n}}{\sqrt {n - 1}} + \frac {1}{\sqrt {n(n - 1)}}\right)(x_{n - 1} + y_{n - 1} + z_{n - 1}).\]](//latex.artofproblemsolving.com/0/6/e/06e2b8c53dab88108fc7073f0ce85d900ca00e21.png)
But
, so we can easily see that in general
as well.
We now claim that
, which would imply by the Cauchy-Schwarz Inequality that
![\[ 16 > \left(1^2 + 1^2 + 1^2\right)\left(|x_n|^2 + |y_n|^2 + |z_n|^2\right)\ge(|x_n| + |y_n| + |z_n|)^2,\]](//latex.artofproblemsolving.com/5/d/0/5d055ee41bc9a8d89c3d0ddf15ed599397e49642.png)
or taking the square root (note that the right hand side parentheses contains a nonnegative expression) and using the triangle inequality,
as we need to prove for the original problem.
To prove this claim, notice that squaring our recursions for
we have
Let
, so
. Adding these three squared quantities together and using
we have
Therefore it is sufficient to prove that for all positive
(when
,
),
or dividing both sides by
and taking the reciprocal (reversing the direction of the inequality),
![\[ \frac {3}{8} < \prod_{k = 1}^{n}\frac {k^2 + k}{k^2 + k + 1} = \prod_{k = 1}^{n}\left(1 - \frac {1}{k^2 + k + 1}\right).\]](//latex.artofproblemsolving.com/d/9/4/d948768fb7d2132b90a4b594a0011122e6c3b079.png)
Since
, we can calculate for
from the recursion
that
and
, both of which are less than
. Otherwise,
, so because
is true for all positive
we have

![\[ a_n = a_{n - 1} + \frac {c_{n - 1}}{n},\quad b_n = b_{n - 1} + \frac {a_{n - 1}}{n},\quad c_n = c_{n - 1} + \frac {b_{n - 1}}{n}.\]](http://latex.artofproblemsolving.com/0/5/8/058250c6144d6a5c89b760239218d8412910e35e.png)
First we plug in



![\[ x_n = \sqrt {3n}\left(a_n - \frac {n + 1}{3}\right)\]](http://latex.artofproblemsolving.com/1/f/1/1f1e216ab2d7852475203f4dd48d7678efa71f6e.png)
and so on, we have



![\[ \left|a_n - \frac {n + 1}{3}\right| < \frac {2}{\sqrt {3n}}\Longleftrightarrow\left|\sqrt {3n}\left(a_n - \frac {n + 1}{3}\right)\right| < 2\Longleftrightarrow|x_n| < 2.\]](http://latex.artofproblemsolving.com/b/3/9/b393cfd927727fe5bdbde1ff9ac338787e3f7416.png)
First note that
![\[ x_n = \sqrt {3n}\left(a_n - \frac {n + 1}{3}\right)\Longleftrightarrow a_n = \frac {x_n}{\sqrt {3n}} + \frac {n + 1}{3}.\]](http://latex.artofproblemsolving.com/6/6/2/66211e234e352fc1f634f7b73bba8802a6888d09.png)
(Cyclic relations hold as well.) Hence the original recursions can be rewritten as
\[ \begin{align*}\frac {x_n}{\sqrt {3n}} + \frac {n + 1}{3} = a_n & = a_{n - 1} + \frac {c_{n - 1}}{n} \\ & = \frac {x_{n - 1}}{\sqrt {3(n - 1)}} + \frac {n}{3} + \frac {z_{n - 1}}{n\sqrt {3(n - 1)}} + \frac {1}{3} \\ x_n & = \frac {x_{n - 1}\sqrt {n}}{\sqrt {n - 1}} + \frac {z_{n - 1}}{\sqrt {n(n - 1)}} \\ y_n & = \frac {y_{n - 1}\sqrt {n}}{\sqrt {n - 1}} + \frac {x_{n - 1}}{\sqrt {n(n - 1)}} \\ \quad z_n & = \frac {z_{n - 1}\sqrt {n}}{\sqrt {n - 1}} + \frac {y_{n - 1}}{\sqrt {n(n - 1)}}.\end{align*}\]
Summing the three new recurrence relations up, we have
![\[ x_n + y_n + z_n = \left(\frac {\sqrt {n}}{\sqrt {n - 1}} + \frac {1}{\sqrt {n(n - 1)}}\right)(x_{n - 1} + y_{n - 1} + z_{n - 1}).\]](http://latex.artofproblemsolving.com/0/6/e/06e2b8c53dab88108fc7073f0ce85d900ca00e21.png)
But


We now claim that

![\[ 16 > \left(1^2 + 1^2 + 1^2\right)\left(|x_n|^2 + |y_n|^2 + |z_n|^2\right)\ge(|x_n| + |y_n| + |z_n|)^2,\]](http://latex.artofproblemsolving.com/5/d/0/5d055ee41bc9a8d89c3d0ddf15ed599397e49642.png)
or taking the square root (note that the right hand side parentheses contains a nonnegative expression) and using the triangle inequality,
\[ \begin{align*}4 > |x_n| + | - y_n| + | - z_n| & \ge|x_n - y_n - z_n| \\ & = |x_n + (x_n + y_n + z_n) - y_n - z_n| = |2x_n| \\ 2 & > |x_n|,\]
as we need to prove for the original problem.
To prove this claim, notice that squaring our recursions for

\[ \begin{align*}x_n^2 & = \frac {n}{n - 1}x_{n - 1}^2 + \frac {1}{n(n - 1)}z_{n - 1}^2 + \frac {1}{n - 1}2x_{n - 1}z_{n - 1} \\ y_n^2 & = \frac {n}{n - 1}y_{n - 1}^2 + \frac {1}{n(n - 1)}x_{n - 1}^2 + \frac {1}{n - 1}2y_{n - 1}x_{n - 1} \\ z_n^2 & = \frac {n}{n - 1}z_{n - 1}^2 + \frac {1}{n(n - 1)}y_{n - 1}^2 + \frac {1}{n - 1}2z_{n - 1}y_{n - 1}.\end{align*}\]
Let


\[ \begin{align*} & 2x_{n - 1}y_{n - 1} + 2y_{n - 1}z_{n - 1} + 2z_{n - 1}x_{n - 1} \\ = & (x_{n - 1} + y_{n - 1} + z_{n - 1})^2 - (x_{n - 1}^2 + y_{n - 1}^2 + z_{n - 1}^2) \\ = & (0)^2 - s_{n - 1} = - s_{n - 1}\end{align*}\]
we have
\[ \begin{align*}s_n & = x_n^2 + y_n^2 + z_n^2 = \left(\frac {n}{n - 1} + \frac {1}{n(n - 1)}\right)s_{n - 1} + \frac1{n - 1}( - s_{n - 1}) \\ & = \left(\frac {n}{n - 1} + \frac {1}{n(n - 1)} - \frac {1}{n - 1}\right)s_{n - 1} = \left(1 + \frac {1}{n(n - 1)}\right)s_{n - 1} \\ & = \left(1 + \frac {1}{n(n - 1)}\right)\cdots\left(1 + \frac {1}{2\cdot1}\right)s_{1} \\ & = 2\left(1 + \frac {1}{n(n - 1)}\right)\cdots\left(1 + \frac {1}{2\cdot1}\right).\end{align*}\]
Therefore it is sufficient to prove that for all positive



\[ \begin{align*}\frac {16}{3} > s_{n + 1} & = 2\left(1 + \frac1{1\cdot2}\right)\cdots\left(1 + \frac {1}{n(n + 1)}\right) \\ & = 2\prod_{k = 1}^{n}\left(1 + \frac {1}{k(k + 1)}\right) \\ & = 2\prod_{k = 1}^{n}\frac {k^2 + k + 1}{k^2 + k},\end{align*}\]
or dividing both sides by

![\[ \frac {3}{8} < \prod_{k = 1}^{n}\frac {k^2 + k}{k^2 + k + 1} = \prod_{k = 1}^{n}\left(1 - \frac {1}{k^2 + k + 1}\right).\]](http://latex.artofproblemsolving.com/d/9/4/d948768fb7d2132b90a4b594a0011122e6c3b079.png)
Since









\[ \begin{align*} & \prod_{k = 1}^{n}\left(1 - \frac {1}{k^2 + k + 1}\right) \\ > & \left(1 - \frac {1}{1^2 + 1 + 1}\right)\left(1 - \frac {1}{2^2 + 2 + 1}\right)\prod_{k = 3}^{n}\left(1 - \frac {1}{k^2}\right) \\ = & \left(\frac {2}{3}\right)\left(\frac {6}{7}\right)\prod_{k = 3}^{n}\left(\left(1 - \frac {1}{k}\right)\left(1 + \frac {1}{k}\right)\right) = \frac {4}{7}\prod_{k = 3}^{n}\frac {k - 1}{k}\prod_{k = 3}^{n}\frac {k + 1}{k} \\ = & \frac {4}{7}\left(\frac {\prod_{k = 3}^{n}(k - 1)\prod_{k = 3}^{n}(k + 1)}{\prod_{k = 3}^{n}k\prod_{k = 3}^{n}k}\right) = \frac {4}{7}\left(\frac {\left(\frac {2}{n}\prod_{k = 3}^{n}k\right)\left(\frac {n + 1}{3}\prod_{k = 3}^{n}k\right)}{\prod_{k = 3}^{n}k\prod_{k = 3}^{n}k}\right) \\ = & \frac {4}{7}\left(\frac {2}{3}\right)\left(\frac {n + 1}{n}\right) = \frac {8}{21}\left(\frac {n + 1}{n}\right) = \left(\frac {3}{8} + \frac {1}{168}\right)\left(1 + \frac {1}{n}\right) > \frac {3}{8}.\blacksquare\end{align*}\]
Edit: OK perfect blah.
This post has been edited 1 time. Last edited by math154, Aug 5, 2010, 9:01 PM