number theory

by karimeow, Mar 23, 2025, 8:14 AM

Prove that there exist infinitely many positive integers m such that the equation (xz+1)(yz+1) = mz^3 + 1 has infinitely many positive integer solutions.

A lot of tangent circle

by ItzsleepyXD, Mar 23, 2025, 7:53 AM

Let \( \triangle ABC \) be a triangle with circumcircle \( \omega \) and circumcenter \( O \). Let \( \omega_A \) and \( I_A \) represent the \( A \)-excircle and \( A \)-excenter, respectively. Denote by \( \omega_B \) the circle tangent to \( AB \), \( BC \), and \( \omega \) on the arc \( BC \) not containing \( A \), and similarly for \( \omega_C \). Let the tangency points of \( \omega_A, \omega_B, \omega_C \) with line \( BC \) be \( X, Y, Z \), respectively. Let \( P \neq A \) be the intersection point of \( (AYZ) \) and \( \omega \). Define \( Q \) as the point on segment \( OI_A \) such that \( 2 \cdot OQ = QI_A \). Suppose that \( XP \) intersects \( \omega \) again at \( R \). Let \( T \) be the touch point of the \( A \)-mixtilinear incircle and \( \omega \), and let \( A' \) be the antipode of \( A \) with respect to \( \omega \). Let \( S \) be the intersection of \( A'Q \) and \( I_AT \).

Show that the line \( RS \) is the radical axis of \( \omega_B \) and \( \omega_C \).

deduction from function

by MetaphysicalWukong, Mar 23, 2025, 7:19 AM

can we then deduce that h has exactly 1 zero?
Attachments:

permutations of sets

by cloventeen, Mar 23, 2025, 2:36 AM

Find the number of permutations of the set \( A = (1, 2, \dots, n) \) with the set \( B = (1, 1, 2, 3, \dots, n) \) such that each element in the permutations has at most one immediate neighbor greater than itself.

number theory question?

by jag11, Mar 22, 2025, 10:41 PM

Find the smallest positive integer n such that n is a multiple of 11, n +1 is a multiple of 10, n + 2 is a
multiple of 9, n + 3 is a multiple of 8, n +4 is a multiple of 7, n +5 is a multiple of 6, n +6 is a multiple of
5, n + 7 is a multiple of 4, n + 8 is a multiple of 3, and n + 9 is a multiple of 2.

I tried doing the mods and simplifying it but I'm kinda confused.
This post has been edited 1 time. Last edited by jag11, Yesterday at 10:41 PM
Reason: edit

Guessing with intervals

by navi_09220114, Mar 22, 2025, 12:55 PM

Let $n\ge 4$ be a positive integer. Megavan and Minivan are playing a game, where Megavan secretly chooses a real number $x$ in $[0, 1]$. At the start of the game, the only information Minivan has about $x$ is $x$ in $[0, 1]$. He needs to now learn about $x$ based on the following protocols: at each turn of his, Minivan chooses a number $y$ and submits to Megavan, where Megavan replies immediately with one of $y > x$, $y < x$, or $y\simeq x$, subject to two rules:

$\bullet$ The answers in the form of $y > x$ and $y < x$ must be truthful;

$\bullet$ Define the score of a round, known only to Megavan, as follows: $0$ if the answer is in the form $y > x$ and $y < x$, and $|x - y|$ if in the form $y\simeq x$. Then for every positive integer $k$ and every $k$ consecutive rounds, at least one round has score no more than $\frac{1}{k + 1}$.

Minivan's goal is to produce numbers $a, b$ such that $a\le x\le b$ and $b - a\le \frac 1n$. Let $f(n)$ be the minimum number of queries that Minivan needs in order to guarantee success, regardless of Megavan's strategy. Prove that $$n\le f(n) \le 4n$$
Proposed by Anzo Teh Zhao Yang
This post has been edited 2 times. Last edited by navi_09220114, Yesterday at 12:59 PM

Eventually constant sequence with condition

by PerfectPlayer, Mar 18, 2025, 4:27 AM

A positive real number sequence $a_1, a_2, a_3,\dots $ and a positive integer \(s\) is given.
Let $f_n(0) = \frac{a_n+\dots+a_1}{n}$ and for each $0<k<n$
\[f_n(k)=\frac{a_n+\dots+a_{k+1}}{n-k}-\frac{a_k+\dots+a_1}{k}\]Then for every integer $n\geq s,$ the condition
\[a_{n+1}=\max_{0\leq k<n}(f_n(k))\]is satisfied. Prove that this sequence must be eventually constant.

weird FE on R

by frac, Jan 4, 2025, 12:15 PM

Find all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ such that
$$f(x+y)^2=xf(x+f(y))+yf(f(y))+f(xy)$$for all $x,y\in \mathbb{R}$.
This post has been edited 4 times. Last edited by frac, 3 hours ago

triangles with equal areas

by mathuz, Dec 28, 2023, 7:41 AM

Let $ABCD$ be a trapezoid with $AD\parallel BC$. A point $M $ is chosen inside the trapezoid, and a point $N$ is chosen inside the triangle $BMC$ such that $AM\parallel CN$, $BM\parallel DN$. Prove that triangles $ABN$ and $CDM$ have equal areas.
This post has been edited 1 time. Last edited by mathuz, Dec 28, 2023, 7:42 AM

EM // AC wanted, isosceles trapezoid related

by parmenides51, Dec 18, 2020, 6:46 PM

Given is an isosceles trapezoid $ABCD$ with $AB \parallel CD$ and $AB> CD$. The projection from $D$ on $ AB$ is $E$. The midpoint of the diagonal $BD$ is $M$. Prove that $EM$ is parallel to $AC$.

(Karl Czakler)
This post has been edited 1 time. Last edited by parmenides51, May 9, 2024, 11:56 PM
Archives
+ December 2013
+ December 2012
+ February 2012
+ January 2012
+ November 2011
+ April 2011
+ January 2011
+ November 2010
+ October 2010
+ December 2009
Hi
+ October 2009
+ July 2009
Shouts
Submit
  • !!!!!!!!

    by stroller, Mar 10, 2020, 8:15 PM

  • cooooooool
    nice blog

    by Navansh, Jun 4, 2019, 7:47 AM

  • Victor is one of the GOATs.

    by awesomemathlete, Oct 2, 2018, 11:48 PM

  • This blog is truly amazing.

    by sunfishho, Feb 20, 2018, 6:32 AM

  • what a gem.

    by vjdjmathaddict, May 10, 2017, 3:26 PM

  • Advertisement

    by ahaanomegas, Dec 15, 2013, 7:21 PM

  • yo dawg i heard you imo

    by Mewto55555, Aug 1, 2013, 10:25 PM

  • Good job on 5 problems on USAMO. I know that is a pretty bad score for someone as awesome as you on a normal USAMO, but no one got all 6 this year so it's GREAT!

    VICTOR WANG 42 ON IMO 2013 LET'S GO.

    See you at MOP this year (probably :) ).

    by yugrey, May 3, 2013, 10:32 PM

  • you can just write "Solution

    by math154, Feb 6, 2013, 6:33 PM

  • Hello. May I ask a stupid question: how to turn "Hidden Text" into hidden "Solution" tag?

    by ysymyth, Feb 1, 2013, 12:59 PM

  • This is a good blog.I like it.

    by Lingqiao, Jul 17, 2012, 4:21 PM

  • hi.i like the blog.

    by Dranzer, Feb 9, 2012, 12:25 PM

  • sorry, i've decided this blog is just for the random stuff i do. don't take it personally... you can always post things on your own blog

    by math154, Nov 23, 2011, 10:26 PM

  • what i got uncontribbed for posting a nice geo problem?

    by yugrey, Nov 23, 2011, 1:32 AM

  • Can I be a contributor?

    by Binomial-theorem, Oct 5, 2011, 12:39 AM

101 shouts
Tags
About Owner
  • Posts: 4302
  • Joined: Jan 21, 2008
Blog Stats
  • Blog created: Feb 26, 2009
  • Total entries: 96
  • Total visits: 191483
  • Total comments: 125
Search Blog
a