Y by
Let
and
be two infinite sequences of integers. Prove that there exists an infinite sequence of integers
such that for any positive integer
, the following holds:
![\[
\sum_{k|n} k \cdot z_k^{\frac{n}{k}} = \left( \sum_{k|n} k \cdot x_k^{\frac{n}{k}} \right) \cdot \left( \sum_{k|n} k \cdot y_k^{\frac{n}{k}} \right).
\]](//latex.artofproblemsolving.com/2/5/9/259ee32c89befe7a3ee2797e0d5b1df1c3066cf6.png)




![\[
\sum_{k|n} k \cdot z_k^{\frac{n}{k}} = \left( \sum_{k|n} k \cdot x_k^{\frac{n}{k}} \right) \cdot \left( \sum_{k|n} k \cdot y_k^{\frac{n}{k}} \right).
\]](http://latex.artofproblemsolving.com/2/5/9/259ee32c89befe7a3ee2797e0d5b1df1c3066cf6.png)
Free webinar 4/3 about Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor.
Something appears to not have loaded correctly.