Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Number Theory
fasttrust_12-mn   13
N 2 hours ago by KTYC
Source: Pan African Mathematics Olympiad P1
Find all positive intgers $a,b$ and $c$ such that $\frac{a+b}{a+c}=\frac{b+c}{b+a}$ and $ab+bc+ca$ is a prime number
13 replies
fasttrust_12-mn
Aug 15, 2024
KTYC
2 hours ago
GCD of terms in a sequence
BBNoDollar   0
2 hours ago
Determine the general term of the sequence of non-zero natural numbers (a_n)n≥1, with the property that gcd(a_m, a_n, a_p) = gcd(m^2 ,n^2 ,p^2), for any distinct non-zero natural numbers m, n, p.

⁡Note that gcd(a,b,c) denotes the greatest common divisor of the natural numbers a,b,c .
0 replies
BBNoDollar
2 hours ago
0 replies
Aime type Geo
ehuseyinyigit   3
N 2 hours ago by sami1618
Source: Turkish First Round 2024
In a scalene triangle $ABC$, let $M$ be the midpoint of side $BC$. Let the line perpendicular to $AC$ at point $C$ intersect $AM$ at $N$. If $(BMN)$ is tangent to $AB$ at $B$, find $AB/MA$.
3 replies
ehuseyinyigit
Monday at 9:04 PM
sami1618
2 hours ago
minimizing sum
gggzul   1
N 3 hours ago by RedFireTruck
Let $x, y, z$ be real numbers such that $x^2+y^2+z^2=1$. Find
$$min\{12x-4y-3z\}.$$
1 reply
gggzul
4 hours ago
RedFireTruck
3 hours ago
Equilateral Triangle inside Equilateral Triangles.
abhisruta03   2
N 3 hours ago by Reacheddreams
Source: ISI 2021 P6
If a given equilateral triangle $\Delta$ of side length $a$ lies in the union of five equilateral triangles of side length $b$, show that there exist four equilateral triangles of side length $b$ whose union contains $\Delta$.
2 replies
abhisruta03
Jul 18, 2021
Reacheddreams
3 hours ago
USAMO 1984 Problem 5 - Polynomial of degree 3n
Binomial-theorem   8
N 3 hours ago by Assassino9931
Source: USAMO 1984 Problem 5
$P(x)$ is a polynomial of degree $3n$ such that

\begin{eqnarray*}
P(0) = P(3) = \cdots &=& P(3n) = 2, \\
P(1) = P(4) = \cdots &=& P(3n-2) = 1, \\
P(2) = P(5) = \cdots &=& P(3n-1) = 0, \quad\text{ and }\\
&& P(3n+1) = 730.\end{eqnarray*}

Determine $n$.
8 replies
Binomial-theorem
Aug 16, 2011
Assassino9931
3 hours ago
Finding positive integers with good divisors
nAalniaOMliO   2
N 3 hours ago by KTYC
Source: Belarusian National Olympiad 2025
For every positive integer $n$ write all its divisors in increasing order: $1=d_1<d_2<\ldots<d_k=n$.
Find all $n$ such that $2025 \cdot n=d_{20} \cdot d_{25}$.
2 replies
nAalniaOMliO
Mar 28, 2025
KTYC
3 hours ago
Balkan MO 2025 p1
Mamadi   1
N 3 hours ago by KevinYang2.71
Source: Balkan MO 2025
An integer \( n > 1 \) is called good if there exists a permutation \( a_1, a_2, \dots, a_n \) of the numbers \( 1, 2, 3, \dots, n \), such that:

\( a_i \) and \( a_{i+1} \) have different parities for every \( 1 \le i \le n - 1 \)

the sum \( a_1 + a_2 + \dots + a_k \) is a quadratic residue modulo \( n \) for every \( 1 \le k \le n \)

Prove that there exist infinitely many good numbers, as well as infinitely many positive integers which are not good.

Remark: Here an integer \( z \) is considered a quadratic residue modulo \( n \) if there exists an integer \( y \) such that \( y^2 \equiv z \pmod{n} \).
1 reply
Mamadi
5 hours ago
KevinYang2.71
3 hours ago
Random Points = Problem
kingu   4
N 4 hours ago by zuat.e
Source: Chinese Geometry Handout
Let $ABC$ be a triangle. Let $\omega$ be a circle passing through $B$ intersecting $AB$ at $D$ and $BC$ at $F$. Let $G$ be the intersection of $AF$ and $\omega$. Further, let $M$ and $N$ be the intersections of $FD$ and $DG$ with the tangent to $(ABC)$ at $A$. Now, let $L$ be the second intersection of $MC$ and $(ABC)$. Then, prove that $M$ , $L$ , $D$ , $E$ and $N$ are concyclic.
4 replies
kingu
Apr 27, 2024
zuat.e
4 hours ago
CooL geo
Pomegranat   2
N 4 hours ago by Curious_Droid
Source: Idk

In triangle \( ABC \), \( D \) is the midpoint of \( BC \). \( E \) is an arbitrary point on \( AC \). Let \( S \) be the intersection of \( AD \) and \( BE \). The line \( CS \) intersects with the circumcircle of \( ACD \), for the second time at \( K \). \( P \) is the circumcenter of triangle \( ABE \). Prove that \( PK \perp CK \).
2 replies
Pomegranat
Monday at 5:57 AM
Curious_Droid
4 hours ago
a