Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Area of Polygon
AIME15   43
N 4 hours ago by EthanNg6
The area of polygon $ ABCDEF$, in square units, is

IMAGE

\[ \textbf{(A)}\ 24 \qquad
\textbf{(B)}\ 30 \qquad
\textbf{(C)}\ 46 \qquad
\textbf{(D)}\ 66 \qquad
\textbf{(E)}\ 74
\]
43 replies
AIME15
Jan 12, 2009
EthanNg6
4 hours ago
2025 OMOUS Problem 6
enter16180   2
N Yesterday at 9:06 PM by loup blanc
Source: Open Mathematical Olympiad for University Students (OMOUS-2025)
Let $A=\left(a_{i j}\right)_{i, j=1}^{n} \in M_{n}(\mathbb{R})$ be a positive semi-definite matrix. Prove that the matrix $B=\left(b_{i j}\right)_{i, j=1}^{n} \text {, where }$ $b_{i j}=\arcsin \left(x^{i+j}\right) \cdot a_{i j}$, is also positive semi-definite for all $x \in(0,1)$.
2 replies
enter16180
Apr 18, 2025
loup blanc
Yesterday at 9:06 PM
Sum of multinomial in sublinear time
programjames1   0
Yesterday at 7:45 PM
Source: Own
A frog begins at the origin, and makes a sequence of hops either two to the right, two up, or one to the right and one up, all with equal probability.

1. What is the probability the frog eventually lands on $(a, b)$?

2. Find an algorithm to compute this in sublinear time.
0 replies
programjames1
Yesterday at 7:45 PM
0 replies
Find the answer
JetFire008   1
N Yesterday at 6:42 PM by Filipjack
Source: Putnam and Beyond
Find all pairs of real numbers $(a,b)$ such that $ a\lfloor bn \rfloor = b\lfloor an \rfloor$ for all positive integers $n$.
1 reply
JetFire008
Yesterday at 12:31 PM
Filipjack
Yesterday at 6:42 PM
Pyramid packing in sphere
smartvong   2
N Yesterday at 4:23 PM by smartvong
Source: own
Let $A_1$ and $B$ be two points that are diametrically opposite to each other on a unit sphere. $n$ right square pyramids are fitted along the line segment $\overline{A_1B}$, such that the apex and altitude of each pyramid $i$, where $1\le i\le n$, are $A_i$ and $\overline{A_iA_{i+1}}$ respectively, and the points $A_1, A_2, \dots, A_n, A_{n+1}, B$ are collinear.

(a) Find the maximum total volume of $n$ pyramids, with altitudes of equal length, that can be fitted in the sphere, in terms of $n$.

(b) Find the maximum total volume of $n$ pyramids that can be fitted in the sphere, in terms of $n$.

(c) Find the maximum total volume of the pyramids that can be fitted in the sphere as $n$ tends to infinity.

Note: The altitudes of the pyramids are not necessarily equal in length for (b) and (c).
2 replies
smartvong
Apr 13, 2025
smartvong
Yesterday at 4:23 PM
Interesting Limit
Riptide1901   1
N Yesterday at 1:45 PM by Svyatoslav
Find $\displaystyle\lim_{x\to\infty}\left|f(x)-\Gamma^{-1}(x)\right|$ where $\Gamma^{-1}(x)$ is the inverse gamma function, and $f^{-1}$ is the inverse of $f(x)=x^x.$
1 reply
Riptide1901
Apr 18, 2025
Svyatoslav
Yesterday at 1:45 PM
2022 Putnam B1
giginori   25
N Yesterday at 12:13 PM by cursed_tangent1434
Suppose that $P(x)=a_1x+a_2x^2+\ldots+a_nx^n$ is a polynomial with integer coefficients, with $a_1$ odd. Suppose that $e^{P(x)}=b_0+b_1x+b_2x^2+\ldots$ for all $x.$ Prove that $b_k$ is nonzero for all $k \geq 0.$
25 replies
giginori
Dec 4, 2022
cursed_tangent1434
Yesterday at 12:13 PM
Number of A^2=I3
EthanWYX2009   1
N Yesterday at 11:21 AM by loup blanc
Source: 2025 taca-14
Determine the number of $A\in\mathbb F_5^{3\times 3}$, such that $A^2=I_3.$
1 reply
EthanWYX2009
Yesterday at 7:51 AM
loup blanc
Yesterday at 11:21 AM
Prove this recursion!
Entrepreneur   3
N Yesterday at 11:06 AM by quasar_lord
Source: Amit Agarwal
Let $$I_n=\int z^n e^{\frac 1z}dz.$$Prove that $$\color{blue}{I_n=(n+1)!I_0+e^{\frac 1z}\sum_{n=1}^n n! z^{n+1}.}$$
3 replies
Entrepreneur
Jul 31, 2024
quasar_lord
Yesterday at 11:06 AM
Pove or disprove
Butterfly   1
N Yesterday at 10:05 AM by Filipjack

Denote $y_n=\max(x_n,x_{n+1},x_{n+2})$. Prove or disprove that if $\{y_n\}$ converges then so does $\{x_n\}.$
1 reply
Butterfly
Yesterday at 9:34 AM
Filipjack
Yesterday at 10:05 AM
fractional binomial limit sum
Levieee   3
N Yesterday at 9:44 AM by Levieee
this was given to me by a friend

$\lim_{n \to \infty} \sum_{k=1}^{n}{\frac{1}{\binom{n}{k}}}$

a nice solution using sandwich is
$\frac{1}{n}   + \frac{1}{n} + 1 + \frac{n-3}{\binom{n}{2}} \ge \frac{1}{n} +  \sum_{k=2}^{n-2}{\frac{1}{\binom{n}{k}}}+ \frac{1}{n} + 1 \ge \frac{1}{n} +  + \frac{1}{n} + 1$

therefore $\lim_{n \to \infty} \sum_{k=1}^{n}{\frac{1}{\binom{n}{k}}}$ = $1$

ALSO ANOTHER SOLUTION WHICH I WAS THINKING OF WITHOUT SANDWICH BUT I CANT COMPLETE WAS TO USE THE GAMMA FUNCTION

we know

$B(x, y) = \int_0^1 t^{x - 1} (1 - t)^{y - 1} \, dt$

$B(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)}$

and $\Gamma(n) = (n-1)!$ for integers,

$\frac{1}{\binom{n}{k}}$ = $\frac{k! (n-k)!}{n!}$

therefore from the gamma function we get

$ (n+1) \int_{0}^{1}  x^k (1-x)^{n-k} dx$ = $\frac{1}{\binom{n}{k}}$ = $\frac{k! (n-k)!}{n!}$
$\Rightarrow$ $\lim_{n \to \infty} (n+1) \int_{0}^{1} \sum_{k=1}^{n} x^k (1-x)^{n-k} dx$ $=\lim_{n \to \infty} \sum_{k=1}^{n}{\frac{1}{\binom{n}{k}}}$

somehow im supposed to show that

$\lim_{n \to \infty} (n+1) \int_{0}^{1} \sum_{k=1}^{n} x^k (1-x)^{n-k} dx$ $= 1$

all i could observe was if we do L'hopital (which i hate to do as much as you do)

i get $\frac{ \int_{0}^{1} \sum_{k=1}^{n} x^k (1-x)^{n-k} dx}{1/n+1}$

now since $x \in (0,1)$ , as $n \to \infty$ the $(1-x)^{n-k} \to 0$ which gets us the $\frac{0}{0}$ form therefore L'hopital came to my mind , which might be a completely wrong intuition, anyway what should i do to find that limit

:noo: :pilot:
3 replies
Levieee
Saturday at 9:51 PM
Levieee
Yesterday at 9:44 AM
a