Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Primes p such that p and p^2+2p-8 are primes too
mhet49   44
N 2 hours ago by MITDragon
Source: Albanian National Math Olympiad 2012
Find all primes $p$ such that $p+2$ and $p^2+2p-8$ are also primes.
44 replies
mhet49
Apr 1, 2012
MITDragon
2 hours ago
Integer polynomial w factorials
Solilin   1
N 2 hours ago by Tkn
Source: 9th Thailand MO
Let $a_1, a_2, ..., a_{2012}$ be pairwise distinct integers. Show that the equation $(x -a_1)(x - a_2)...(x - a_{2012}) = (1006!)^2$ has at most one integral solution.
1 reply
Solilin
Yesterday at 2:12 PM
Tkn
2 hours ago
Combo NT
a_507_bc   4
N 2 hours ago by Namura
Source: Silk Road 2024 P1
Let $n$ be a positive integer and let $p, q>n$ be odd primes. Prove that the positive integers $1, 2, \ldots, n$ can be colored in $2$ colors, such that for any $x \neq y$ of the same color, $xy-1$ is not divisible by $p$ and $q$.
4 replies
a_507_bc
Oct 20, 2024
Namura
2 hours ago
Old hard problem
ItzsleepyXD   2
N 3 hours ago by ItzsleepyXD
Source: IDK
Let $ABC$ be a triangle and let $O$ be its circumcenter and $I$ its incenter.
Let $P$ be the radical center of its three mixtilinears and let $Q$ be the isogonal conjugate of $P$.
Let $G$ be the Gergonne point of the triangle $ABC$.
Prove that line $QG$ is parallel with line $OI$ .
2 replies
ItzsleepyXD
Apr 25, 2025
ItzsleepyXD
3 hours ago
Polynomial Factors
somebodyyouusedtoknow   1
N 3 hours ago by luutrongphuc
Source: San Diego Honors Math Contest 2025 Part II, Problem 2
Let $P(x)$ be a polynomial with real coefficients such that $P(x^n) \mid P(x^{n+1})$ for all $n \in \mathbb{N}$. Prove that $P(x) = cx^k$ for some real constant $c$ and $k \in \mathbb{N}$.
1 reply
somebodyyouusedtoknow
Apr 26, 2025
luutrongphuc
3 hours ago
I need the technique
DievilOnlyM   15
N 5 hours ago by sqing
Let a,b,c be real numbers such that: $ab+7bc+ca=188$.
FInd the minimum value of: $5a^2+11b^2+5c^2$
15 replies
DievilOnlyM
May 23, 2019
sqing
5 hours ago
Linear colorings mod 2^n
vincentwant   1
N 5 hours ago by vincentwant
Let $n$ be a positive integer. The ordered pairs $(x,y)$ where $x,y$ are integers in $[0,2^n)$ are each labeled with a positive integer less than or equal to $2^n$ such that every label is used exactly $2^n$ times and there exist integers $a_1,a_2,\dots,a_{2^n}$ and $b_1,b_2,\dots,b_{2^n}$ such that the following property holds: For any two lattice points $(x_1,y_1)$ and $(x_2,y_2)$ that are both labeled $t$, there exists an integer $k$ such that $x_2-x_1-ka_t$ and $y_2-y_1-kb_t$ are both divisible by $2^n$. How many such labelings exist?
1 reply
vincentwant
Apr 30, 2025
vincentwant
5 hours ago
sqrt(n) or n+p (Generalized 2017 IMO/1)
vincentwant   1
N 5 hours ago by vincentwant
Let $p$ be an odd prime. Define $f(n)$ over the positive integers as follows:
$$f(n)=\begin{cases}
\sqrt{n}&\text{ if n is a perfect square} \\
n+p&\text{ otherwise}
\end{cases}$$
Let $p$ be chosen such that there exists an ordered pair of positive integers $(n,k)$ where $n>1,p\nmid n$ such that $f^k(n)=n$. Prove that there exists at least three integers $i$ such that $1\leq i\leq k$ and $f^i(n)$ is a perfect square.
1 reply
vincentwant
Apr 30, 2025
vincentwant
5 hours ago
Flight between cities
USJL   5
N 5 hours ago by Photaesthesia
Source: 2025 Taiwan TST Round 1 Mock P5
A country has 2025 cites, with some pairs of cities having bidirectional flight routes between them. For any pair of the cities, the flight route between them must be operated by one of the companies $X, Y$ or $Z$. To avoid unfairly favoring specific company, the regulation ensures that if there have three cities $A, B$ and $C$, with flight routes $A \leftrightarrow B$ and $A \leftrightarrow C$ operated by two different companies, then there must exist flight route $B \leftrightarrow C$ operated by the third company different from $A \leftrightarrow B$ and $A \leftrightarrow C$ .

Let $n_X$, $n_Y$ and $n_Z$ denote the number of flight routes operated by companies $X, Y$ and $Z$, respectively. It is known that, starting from a city, we can arrive any other city through a series of flight routes (not necessary operated by the same company). Find the minimum possible value of $\max(n_X, n_Y , n_Z)$.

Proposed by usjl and YaWNeeT
5 replies
USJL
Mar 8, 2025
Photaesthesia
5 hours ago
A problem from Le Anh Vinh book.
minhquannguyen   0
5 hours ago
Source: LE ANH VINH, DINH HUONG BOI DUONG HOC SINH NANG KHIEU TOAN TAP 1 DAI SO
Let $n$ is a positive integer. Determine all functions $f:(1,+\infty)\to\mathbb{R}$ such that
\[f(x^{n+1}+y^{n+1})=x^nf(x)+y^nf(y),\forall x,y>1.\]
0 replies
minhquannguyen
5 hours ago
0 replies
a