Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
Reflected point lies on radical axis
Mahdi_Mashayekhi   5
N an hour ago by Mahdi_Mashayekhi
Source: Iran 2025 second round P4
Given is an acute and scalene triangle $ABC$ with circumcenter $O$. $BO$ and $CO$ intersect the altitude from $A$ to $BC$ at points $P$ and $Q$ respectively. $X$ is the circumcenter of triangle $OPQ$ and $O'$ is the reflection of $O$ over $BC$. $Y$ is the second intersection of circumcircles of triangles $BXP$ and $CXQ$. Show that $X,Y,O'$ are collinear.
5 replies
Mahdi_Mashayekhi
Apr 19, 2025
Mahdi_Mashayekhi
an hour ago
Find the value
sqing   18
N an hour ago by Yiyj
Source: 2024 China Fujian High School Mathematics Competition
Let $f(x)=a_6x^6+a_5x^5+a_4x^4+a_3x^3+a_2x^2+a_1x+a_0,$ $a_i\in\{-1,1\} ,i=0,1,2,\cdots,6 $ and $f(2)=-53 .$ Find the value of $f(1).$
18 replies
sqing
Jun 22, 2024
Yiyj
an hour ago
Number Theory
fasttrust_12-mn   14
N 2 hours ago by Namisgood
Source: Pan African Mathematics Olympiad P1
Find all positive intgers $a,b$ and $c$ such that $\frac{a+b}{a+c}=\frac{b+c}{b+a}$ and $ab+bc+ca$ is a prime number
14 replies
fasttrust_12-mn
Aug 15, 2024
Namisgood
2 hours ago
find question
mathematical-forest   5
N 2 hours ago by Jupiterballs
Are there any contest questions that seem simple but are actually difficult? :-D
5 replies
mathematical-forest
Thursday at 10:19 AM
Jupiterballs
2 hours ago
Own made functional equation
Primeniyazidayi   10
N 2 hours ago by Phat_23000245
Source: own(probably)
Find all functions $f:R \rightarrow R$ such that $xf(x^2+2f(y)-yf(x))=f(x)^3-f(y)(f(x^2)-2f(x))$ for all $x,y \in \mathbb{R}$
10 replies
Primeniyazidayi
May 26, 2025
Phat_23000245
2 hours ago
Tough inequality
TUAN2k8   4
N 3 hours ago by Phat_23000245
Source: Own
Let $n \ge 2$ be an even integer and let $x_1,x_2,...,x_n$ be real numbers satisfying $x_1^2+x_2^2+...+x_n^2=n$.
Prove that
$\sum_{1 \le i < j \le n} \frac{x_ix_j}{x_i^2+x_j^2+1} \ge \frac{-n}{6}$
4 replies
TUAN2k8
May 28, 2025
Phat_23000245
3 hours ago
Combi counting
Caasi_Gnow   2
N 3 hours ago by Justbrick
Find the number of different ways to arrange seven people around a circular meeting table if A and B must sit together and C and D cannot sit next to each other. (Note: the order for A and B might be A,B or B,A)
2 replies
Caasi_Gnow
Mar 20, 2025
Justbrick
3 hours ago
Guess period of function
a1267ab   9
N 3 hours ago by HamstPan38825
Source: USA TST 2025
Let $n$ be a positive integer. Ana and Banana play a game. Banana thinks of a function $f\colon\mathbb{Z}\to\mathbb{Z}$ and a prime number $p$. He tells Ana that $f$ is nonconstant, $p<100$, and $f(x+p)=f(x)$ for all integers $x$. Ana's goal is to determine the value of $p$. She writes down $n$ integers $x_1,\dots,x_n$. After seeing this list, Banana writes down $f(x_1),\dots,f(x_n)$ in order. Ana wins if she can determine the value of $p$ from this information. Find the smallest value of $n$ for which Ana has a winning strategy.

Anthony Wang
9 replies
a1267ab
Dec 14, 2024
HamstPan38825
3 hours ago
Inequality with abc=1
tenplusten   11
N 3 hours ago by sqing
Source: JBMO 2011 Shortlist A7
$\boxed{\text{A7}}$ Let $a,b,c$ be positive reals such that $abc=1$.Prove the inequality $\sum\frac{2a^2+\frac{1}{a}}{b+\frac{1}{a}+1}\geq 3$
11 replies
tenplusten
May 15, 2016
sqing
3 hours ago
Central sequences
EeEeRUT   13
N 4 hours ago by v_Enhance
Source: EGMO 2025 P2
An infinite increasing sequence $a_1 < a_2 < a_3 < \cdots$ of positive integers is called central if for every positive integer $n$ , the arithmetic mean of the first $a_n$ terms of the sequence is equal to $a_n$.

Show that there exists an infinite sequence $b_1, b_2, b_3, \dots$ of positive integers such that for every central sequence $a_1, a_2, a_3, \dots, $ there are infinitely many positive integers $n$ with $a_n = b_n$.
13 replies
EeEeRUT
Apr 16, 2025
v_Enhance
4 hours ago
Interesting inequality
sqing   0
4 hours ago
Source: Own
Let $ a,b,c\geq  0 , a^2+b^2+c^2 =3.$ Prove that
$$ a^4+ b^4+c^4+6abc\leq9$$$$ a^3+ b^3+  c^3+3( \sqrt{3}-1)abc\leq 3\sqrt 3$$
0 replies
sqing
4 hours ago
0 replies
a