Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
$f(xy)=xf(y)+yf(x)$
yumeidesu   2
N 4 minutes ago by jasperE3
Find $f: \mathbb{R} \to \mathbb{R}$ such that $f(x+y)=f(x)+f(y), \forall x, y \in \mathbb{R}$ and $f(xy)=xf(y)+yf(x), \forall x, y \in \mathbb{R}.$
2 replies
+1 w
yumeidesu
Apr 14, 2020
jasperE3
4 minutes ago
Pythagorean journey on the blackboard
sarjinius   1
N 8 minutes ago by alfonsoramires
Source: Philippine Mathematical Olympiad 2025 P2
A positive integer is written on a blackboard. Carmela can perform the following operation as many times as she wants: replace the current integer $x$ with another positive integer $y$, as long as $|x^2 - y^2|$ is a perfect square. For example, if the number on the blackboard is $17$, Carmela can replace it with $15$, because $|17^2 - 15^2| = 8^2$, then replace it with $9$, because $|15^2 - 9^2| = 12^2$. If the number on the blackboard is initially $3$, determine all integers that Carmela can write on the blackboard after finitely many operations.
1 reply
sarjinius
Mar 9, 2025
alfonsoramires
8 minutes ago
Functional Equation
AnhQuang_67   2
N 39 minutes ago by jasperE3
Find all functions $f: \mathbb{R} \to \mathbb{R}$ satisfying $$2\cdot f\Big(\dfrac{-xy}{2}+f(x+y)\Big)=xf(y)+y(x), \forall x, y \in \mathbb{R} $$











2 replies
AnhQuang_67
2 hours ago
jasperE3
39 minutes ago
Assisted perpendicular chasing
sarjinius   4
N 42 minutes ago by X.Allaberdiyev
Source: Philippine Mathematical Olympiad 2025 P7
In acute triangle $ABC$ with circumcenter $O$ and orthocenter $H$, let $D$ be an arbitrary point on the circumcircle of triangle $ABC$ such that $D$ does not lie on line $OB$ and that line $OD$ is not parallel to line $BC$. Let $E$ be the point on the circumcircle of triangle $ABC$ such that $DE$ is perpendicular to $BC$, and let $F$ be the point on line $AC$ such that $FA = FE$. Let $P$ and $R$ be the points on the circumcircle of triangle $ABC$ such that $PE$ is a diameter, and $BH$ and $DR$ are parallel. Let $M$ be the midpoint of $DH$.
(a) Show that $AP$ and $BR$ are perpendicular.
(b) Show that $FM$ and $BM$ are perpendicular.
4 replies
sarjinius
Mar 9, 2025
X.Allaberdiyev
42 minutes ago
Problem 2
SlovEcience   1
N an hour ago by Primeniyazidayi
Let \( a, n \) be positive integers and \( p \) be an odd prime such that:
\[
a^p \equiv 1 \pmod{p^n}.
\]Prove that:
\[
a \equiv 1 \pmod{p^{n-1}}.
\]
1 reply
SlovEcience
3 hours ago
Primeniyazidayi
an hour ago
H not needed
dchenmathcounts   45
N an hour ago by EpicBird08
Source: USEMO 2019/1
Let $ABCD$ be a cyclic quadrilateral. A circle centered at $O$ passes through $B$ and $D$ and meets lines $BA$ and $BC$ again at points $E$ and $F$ (distinct from $A,B,C$). Let $H$ denote the orthocenter of triangle $DEF.$ Prove that if lines $AC,$ $DO,$ $EF$ are concurrent, then triangle $ABC$ and $EHF$ are similar.

Robin Son
45 replies
dchenmathcounts
May 23, 2020
EpicBird08
an hour ago
Problem 1
blug   4
N 2 hours ago by grupyorum
Source: Polish Math Olympiad 2025 Finals P1
Find all $(a, b, c, d)\in \mathbb{R}$ satisfying
\[\begin{aligned}
\begin{cases}
    a+b+c+d=0,\\
    a^2+b^2+c^2+d^2=12,\\
    abcd=-3.\\
\end{cases}
\end{aligned}\]
4 replies
blug
Today at 11:46 AM
grupyorum
2 hours ago
A board with crosses that we color
nAalniaOMliO   3
N 2 hours ago by nAalniaOMliO
Source: Belarusian National Olympiad 2025
In some cells of the table $2025 \times 2025$ crosses are placed. A set of 2025 cells we will call balanced if no two of them are in the same row or column. It is known that any balanced set has at least $k$ crosses.
Find the minimal $k$ for which it is always possible to color crosses in two colors such that any balanced set has crosses of both colors.
3 replies
nAalniaOMliO
Mar 28, 2025
nAalniaOMliO
2 hours ago
April Fools Geometry
awesomeming327.   6
N 2 hours ago by GreekIdiot
Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ be the projection from $A$ onto $BC$. Let $E$ be a point on the extension of $AD$ past $D$ such that $\angle BAC+\angle BEC=90^\circ$. Let $L$ be on the perpendicular bisector of $AE$ such that $L$ and $C$ are on the same side of $AE$ and
\[\frac12\angle ALE=1.4\angle ABE+3.4\angle ACE-558^\circ\]Let the reflection of $D$ across $AB$ and $AC$ be $W$ and $Y$, respectively. Let $X\in AW$ and $Z\in AY$ such that $\angle XBE=\angle ZCE=90^\circ$. Let $EX$ and $EZ$ intersect the circumcircles of $EBD$ and $ECD$ at $J$ and $K$, respectively. Let $LB$ and $LC$ intersect $WJ$ and $YK$ at $P$ and $Q$. Let $PQ$ intersect $BC$ at $F$. Prove that $FB/FC=DB/DC$.
6 replies
awesomeming327.
Apr 1, 2025
GreekIdiot
2 hours ago
Functional equations
hanzo.ei   14
N 2 hours ago by jasperE3
Source: Greekldiot
Find all $f: \mathbb R_+ \rightarrow \mathbb R_+$ such that $f(xf(y)+f(x))=yf(x+yf(x)) \: \forall \: x,y \in \mathbb R_+$
14 replies
hanzo.ei
Mar 29, 2025
jasperE3
2 hours ago
Problem 1
SlovEcience   2
N 2 hours ago by Raven_of_the_old
Prove that
\[
C(p-1, k-1) \equiv (-1)^{k-1} \pmod{p}
\]for \( 1 \leq k \leq p-1 \), where \( C(n, m) \) is the binomial coefficient \( n \) choose \( m \).
2 replies
SlovEcience
4 hours ago
Raven_of_the_old
2 hours ago
Conditional maximum
giangtruong13   1
N 2 hours ago by giangtruong13
Source: Specialized Math
Let $a,b$ satisfy that: $1 \leq a \leq2$ and $1 \leq b \leq 2$. Find the maximum: $$A=(a+b^2+\frac{4}{a^2}+\frac{2}{b})(b+a^2+\frac{4}{b^2}+\frac{2}{a})$$
1 reply
giangtruong13
Mar 22, 2025
giangtruong13
2 hours ago
four variables inequality
JK1603JK   0
2 hours ago
Source: unknown?
Prove that $$27(a^4+b^4+c^4+d^4)+148abcd\ge (a+b+c+d)^4,\ \ \forall a,b,c,d\ge 0.$$
0 replies
JK1603JK
2 hours ago
0 replies
a hard geometry problen
Tuguldur   0
3 hours ago
Let $ABCD$ be a convex quadrilateral. Suppose that the circles with diameters $AB$ and $CD$ intersect at points $X$ and $Y$. Let $P=AC\cap BD$ and $Q=AD\cap BC$. Prove that the points $P$, $Q$, $X$ and $Y$ are concyclic.
( $AB$ and $CD$ are not the diagnols)
0 replies
Tuguldur
3 hours ago
0 replies
Iran TST 2009-Day3-P3
khashi70   66
N Mar 30, 2025 by ihategeo_1969
In triangle $ABC$, $D$, $E$ and $F$ are the points of tangency of incircle with the center of $I$ to $BC$, $CA$ and $AB$ respectively. Let $M$ be the foot of the perpendicular from $D$ to $EF$. $P$ is on $DM$ such that $DP = MP$. If $H$ is the orthocenter of $BIC$, prove that $PH$ bisects $ EF$.
66 replies
khashi70
May 16, 2009
ihategeo_1969
Mar 30, 2025
Iran TST 2009-Day3-P3
G H J
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
eibc
598 posts
#60
Y by
Let $X = \overline{BI} \cap \overline{EF}$ and $Y = \overline{CI} \cap \overline{EF}$, and denote the midpoint of $\overline{EF}$ as $N$. By Iran Lemma, $X$ and $Y$ are the feet of the $C$ and $B$ altitudes in $\triangle BIC$, respectively. So, $\triangle DXY$ is the orthic triangle of acute $\triangle BHC$, hence $I$ is its incenter and $H$ is its $D$-excenter. Then by the Midpoint of altitudes lemma, we find that $P$, $N$, and $H$ are collinear since $N$ is the foot from $I$ onto $\overline{XY}$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
CT17
1481 posts
#61
Y by
Let $BI\cap CH = K$, $CI\cap BH = L$, and let $N$ be the midpoint of $EF$. Note that $I$ is the antipode of $H$ in $(HKL)$, and $K$ and $L$ are on $EF$ by Iran Lemma. Then since $\triangle DEF$ and $\triangle HLK$ are homothetic, and if $M'$ is the reflection of $M$ over $N$, $DM'$ is the same cevian in $\triangle DEF$ as $HN$ in $\triangle HKL$ (isotomic to altitude), we have $PN\parallel DM'\parallel HN$ as desired.
This post has been edited 3 times. Last edited by CT17, Sep 4, 2023, 4:25 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
john0512
4176 posts
#62
Y by
Let $T_B$ and $T_C$ denote the feet from $B$ to $CH$ and the feet from $C$ to $BH$ respectively. Note that $BICH$ is an orthocentric system, so $B,I,T_B$ are collinear as well as $C,I,T_C.$ By that egmo lemma, $BI$ and $EF$ intersect at some point $K$ for which $KB\perp CK.$ Thus, $K=T_B$, since the intersections of $BI$ and $(BC)$ are $B$ and $T_B$.

Now, we have an orthic triangle configuration with $D,T_B,T_C$ in $\triangle HBC$. Hence, $I$ is the incenter of $\triangle DT_BT_C.$ Since $T_B$ and $T_C$ lie on $EF$, the foot from $I$ to $T_BT_C$ is just the midpoint of $EF$.

Hence, in $\triangle DT_BT_C$, the midpoint of the D-altitude, $P$, the intouchpoint to $T_BT_C$, which is the midpoint of $EF$, and the $D$-excenter, which is $H$, are collinear, hence $PH$ bisects $EF$ as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cursed_tangent1434
566 posts
#63 • 2 Y
Y by Shreyasharma, ihategeo_1969
My sol is crazy long bruh. Just noticed that this actually connects up with 2011 ISL G4.

One first considers the following claim.

Claim (Partial Iran Lemma) : The feet of the perpendiculars from $B$ to $CI$ and $C$ to $BI$ respectively lie on $\overline{EF}$.

Let $C_1=\overline{EF} \cap \overline{CI}$. Then, note that
\begin{align*}
        2 \measuredangle EC_1I &= 2 \measuredangle ECI +2 \measuredangle C_1EC\\
        &= \measuredangle ACB + 2 \measuredangle FEA\\
        &= \measuredangle ACB + \measuredangle FAE \\
        &= \measuredangle ACB + \measuredangle BAC\\
        &= \measuredangle ABC\\
        &= 2\measuredangle FBI
    \end{align*}Thus, $\measuredangle EC_1I= \measuredangle FBI$. This means that $FBIC_1$ is cyclic and thus $\measuredangle IC_1B = 90^\circ$ which means that indeed $C_1$ is the foot of the perpendicular from $B$ to $CI$. Similarly, the foot of the perpendicular from $C$ to $BI$ also lies on $EF$ and we have our claim.

Now, we have the following very important claim.
Claim (Extended 11SLG4) :
Consider a triangle $ABC$ with $D,E,F$ the feet of the perpendiculars from $A,B,C$ to the opposite sides. Let $H$ be its orthocenter and $Y_A$ be the $A-$Why Point of $\triangle ABC$. Let $P$ be the foot of the altitude from $D$ to $EF$ Then, the following points are collinear,
1. $A$
2. Foot of the perpendicular from $H$ to $EF$ ($Z$)
3. Midpoint of the altitude from $D$ to $EF$ ($M$)
4. $Y_A$


First, consider the inversion centred at $A$ with radius $\sqrt{AD \cdot AH}$. This clearly maps $D$ to $H$, $B$ to $F$ and $C$ to $E$ (and vice versa). Thus, $\overline{EF}$ maps to $(ABC)$ and $\overline{BC}$ maps to $(AEF)$ and thus the $A-$Ex Point $X_A$ maps to the $A-$Queue Point $Q_A$ under this inversion. Further, since $D$ and $H$ map to each other, this in fact means that the circle $(X_AH)$ remains fixed under this inversion ($Q_A$ clearly lies on this circle as $\measuredangle HQ_AX_A=90^\circ$). Further, $Z$ will map to the intersection of $(X_AH)$ and $(ABC)$. The claim is that this intersection is $Y_A$.

Let $A'$ be the reflection of $A$ across the perpendicular bisector of $BC$. Let $G$ be the centroid of $\triangle ABC$ and $W$ the intersection of $\overline{AM}$ and $(ABC)$. It is well known (from 11SLG4) that $Y_A-D-G-A'$ (with $A'G=2DG$). Simply note that
\[GM \cdot GW = \frac{AG \cdot GW}{2} = \frac{A'G\cdot GY_A}{GD \cdot GY_A} = GD \cdot GY_A\]Thus, $DMWY_A$ is cyclic. Now, let $X_A' = \overline{Y_AW} \cap \overline{BC}$. Then,
\[X_A'D\cdot X_A'M = X_A'Y_A\cdot X_A'W = X_A'B \cdot X_A'C\]Thus, $X_A' \equiv X_A$ and we have that $X_A-Y_A-W$. Let $H_A$ be the $A-$Humpty Point. It is well known that $X_A-H-H_A$ and $HH_AMD$ is cyclic. Now, note that from this it follows that,
\[\measuredangle X_AY_AD = \measuredangle WY_AD = \measuredangle AMD=\measuredangle H_AMD = \measuredangle H_AHA = \measuredangle X_AHD\]and thus, $X_AHDY_A$ is cyclic and $Y_A$ lies on $(X_AH)$ as desired.

Thus, $Z$ maps to $Y_A$ in the previously described inversion and we have that $A-Z-Y_A$.

Now, we deal with the other part of the collinearity. Let $N$ be the midpoint of $X_AD$. We already know that $X_AY_ADZ$ is cyclic. Further, since $B,C,H_A$ and $Y_A$ are cyclic and $(X_AD;BC)=-1$ and we also have,
\[\measuredangle H_AY_AD = \measuredangle H_AA' =90^\circ\]$Y_A$ must be the $H_A-$Humpty Point of $\triangle X_ADH_A$. Further, this implies that $H_AY_A$ is the $H_A-$median of this triangle which implies $H_A-Y_A-N$. Thus, $\measuredangle NY_AD = 90^\circ$. Further, $MN \parallel X_AP$ by Midpoint Theorem, which implies that $NY_ADM$ must indeed be cyclic.

Now,
\[\measuredangle DY_AM = \measuredangle DNM = \measuredangle DX_AZ = \measuredangle DY_AZ\]This clearly implies that $Y_A-M-Z$ and we put these two together and conclude that indeed $A-Z-M-Y_A$ are collinear as claimed.

By the first claim, $EF$ is the line joining the feet of the altitudes from $B$ and $C$ to the opposite sides. One now notices that by applying the above-proved claim on $\triangle BHC$, we must have $H, M$ and the foot of the perpendicular from $I$ to $EF$ collinear. But, clearly $AI$ is the perpendicular bisector of $EF$ meaning that, the perpendicular from $I$ to $EF$ passes through the midpoint of $EF$.

Thus, we have that $\overline{PH}$ bisects $\overline{EF}$ as was required.
This post has been edited 4 times. Last edited by cursed_tangent1434, Oct 26, 2023, 12:12 AM
Reason: latex error
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Cusofay
85 posts
#64
Y by
Let $N$ be the midpoint of $[EF]$,$B'=(BI)\cap (EF)$and $C'= (CI)\cap(EF)$. By the Iran lemma (provable by angle chase), the triangle $\triangle DB'C'$ with incenter $I$ is the orthic triangle of $\triangle HBC$. Now since $P$ is the midpoint of the $D-$altitude in $\triangle DB'C'$ and $H$ the $D-$excenter point, the collinearity is well known(4.3 midpoints of Altitudes EGMO).

$$\mathbb{Q.E.D.}$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
shendrew7
793 posts
#65
Y by
Let $K = BI \cap EF$ and $L = CI \cap EF$. Iran Lemma tells us $\triangle DKL$ is the orthic triangle of $\triangle HBC$. Hence Midpoint of the Altitude Lemma this triangle with altitude midpoint $P$, touch point $M$ (midpoint of $EF$), and excenter $K$ finishes. $\blacksquare$
This post has been edited 1 time. Last edited by shendrew7, Feb 13, 2024, 6:54 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
HamstPan38825
8857 posts
#66 • 1 Y
Y by panche
alright here's the stock solution I guess

Let $X$ and $Y$ be the feet from $C$ to $\overline{BI}$ and from $B$ to $\overline{CI}$, which both lie on $\overline{EF}$. It follows that $DXY$ is the orthic triangle of $HBC$, i.e. $H$ is the $D$-excenter of triangle $DXY$ and $I$ is the incenter. Midpoint of altitudes lemma implies $K = \overline{PH} \cap \overline{EF}$ satisfies $\angle IKE = 90^\circ$, or $K$ is the midpoint of $\overline{EF}$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
EpicBird08
1742 posts
#68
Y by
WOAH. Took a "hint" because I heard from somewhere that this is the problem after which the "Iran Lemma" is named.

Let $X$ and $Y$ be the feet of the altitudes from $B,C$ to $CI,BI,$ respectively. By the Iran Lemma, we see that $X,Y,E,F$ are collinear. The condition that $PH$ bisects $EF$ is equivalent to $PH$ passing through the foot of the altitude from $I$ to $XY.$ Since $DYX$ is the orthic triangle of $\triangle BHC,$ we see that $I$ is the incenter of $\triangle XYD,$ so the foot from $I$ to $XY$ is the $D$-intouch point of $\triangle DXY.$ Additionally, it is clear that $H$ is the $D$-excenter of $\triangle DXY.$ Thus we must show that the midpoint of the $D$-altitude, the $D$-excenter, and the $D$-intouch point are collinear, which is well-known.
This post has been edited 1 time. Last edited by EpicBird08, May 28, 2024, 2:50 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ezpotd
1251 posts
#69 • 1 Y
Y by L13832
We use complex bash with the unit circle as the incircle. First, we calculate the circumcenter of $(BIC)$. We know that $(AB)(AC) = (AI)(AI_A)$, and by considering angles we can see that $\frac{(a - b)(a - c)}{(a - i)} =  (a - i_a)$. So we have $a = \frac{2ef}{e + f}$ trivially and cyclic variants. Now we write $$\frac{(a - b)(a - c)}{(a - i)} = \frac{4ef(\frac{f}{e + f} - \frac{d}{d + e}) (\frac{e}{e + f} - \frac{d }{d + f})}{\frac{2ef}{e + f}} = \frac{2(ef - de)(ef - df)}{(e + f)} = \frac{2ef(d - f)(d - e)}{(e + f)(d+e)(d+f)}$$. Now we find $$i_a = \frac{2ef}{e + f} (1 - \frac{(d - e)(d-f)}{(d+e)(d+f)}) = \frac{2ef}{e + f} \frac{2de + 2df}{(d + e)(d+f)} = \frac{4def}{(d+e)(d+f)}$$. The circumcenter of $(BIC)$ is the midpoint of $II_a$, which is just $\frac{2def}{(d + e)(d+f)}$. Now the orthocenter is just given by $b + i + c - 2o = \frac{2de}{d + e} + \frac{2df}{d + f} - \frac{4def}{(d + e)(d + f)} = 2d(\frac{e}{d + e} + \frac{f}{d + f} - \frac{2ef}{(d + e)(d+f)}) = 2d(\frac{de + ef + df + ef - 2ef}{(d + e)(d + f)}) = \frac{2d^2(e+f)}{(d+e)(d+f)}$.

Now, our strategy will be to show that the midpoint of $EF$ is collinear with $P,H$. Find the midpoint as $\frac{e + f}{2}$, now find $M$ as $\frac 12 (d + e + f - \frac{ef}{d})$, and then $P$ is given as $\frac{3d + e + f - \frac{ef}{d}}{4}$. Then we desire $\frac{2e + 2f - 4p}{e + f - 2h}$ is real, which is equivalent to showing $$\frac{e + f - 3d + \frac{ef}{d}}{e + f - 4d^2\frac{(e+f)}{(d+e)(d+f)}} = \frac{(d+e)(d+f)(e + f - 3d + \frac{ef}{d})}{((d+e)(d+f)(e+f)-4d^2(e+f))} = \frac{(d+e)(d+f)(e + f -3d + \frac{ef}{d})}{e^2f+f^2e+e^2d+f^2d + 2def - 3d^2e-3d^2f} = \frac{(d+e)(d+f)}{(de+df)}$$which is obviously self conjugating, so we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Eka01
204 posts
#70 • 1 Y
Y by AaruPhyMath
Notice that in $\Delta BHC$, $I$ is the orthocenter due to Iran lemma and it is also the incenter of orthic triangle of $\Delta BHC$. The midpoint of $EF$ is the foot of altitude from $I$ to $EF$ and $P$ is the midpoint of the $D$ altitude of the orthic triangle of $BHC$ and $H$ is the $D$ excenter of this orthic triangle so the desired result follows by midpoint of altitude lemma.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cj13609517288
1879 posts
#71 • 1 Y
Y by ehuseyinyigit
Let $Q$ be the midpoint of $EF$, let $S$ be the foot of the perpendicular from $H$ to $EF$, and let $K$ be the "Iran lemma point" (the concurrency point of $EF$, $CH$, $BI$). Then
\[-1=(EF\cap BC,D;C,B)\stackrel{K}{=}(RD;HI)\stackrel{\infty_{\perp EF}}{=}(RM;SQ)\stackrel{H}{=}(D,M;\infty_{DM},HQ\cap DM),\]so $HQ$ bisects $MD$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
shendrew7
793 posts
#72
Y by
Let $N$ be the midpoint of $EF$, and note
\[(MD;P\infty) \overset{N}{=} (MN \cap HD, D; HI) = -1. \quad \blacksquare\]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathandski
737 posts
#73
Y by
Synthetic sol

Subjective Rating (MOHs) $       $
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
awesomeming327.
1687 posts
#74
Y by
Let $H_B$ and $H_C$ be the feet of the altitudes from $B$ and $C$ to $CI$ and $BI$, respectively. It's easy to see that $FH_BIDB$ and $EH_CIDC$ are cyclic.

Claim: $H_B$ and $H_C$ lie on $EF$.
It's clear by
\[\measuredangle H_BFI=\measuredangle H_BBI=90^\circ-\measuredangle BIH_B=90^\circ-\measuredangle BIC=-\tfrac{\measuredangle BAC}{2}=\measuredangle EFI\]with $H_C$ following analogously.
Let $N$ be the intersection of $HP$ with $EF$. Let $H_A$ be the foot of the altitude from $H$ to $EF$. Let $T$ be the intersection of $DH$ and $EF$. We will use LinPOP on $(BID)$ and $(CID)$. For any point $X$ let $f(X)$ be $\text{Pow}_{(BID)}(X)-\text{Pow}_{(CID)}(X)$. LinPOP states that $f$ is linear. It suffices to show that $f(N)=\tfrac{f(F)+f(E)}{2}$.

Since $T$ is on the radical axis of the two circles, $f(T)=0$. By Menelaus on $PNH$ traversing $\triangle MTD$,
\[\frac{MN}{TN}\cdot \frac{TH}{DH}\cdot \frac{DP}{MP}=1\implies \frac{MN}{TN}=\frac{DH}{TH}\implies \frac{NT}{MT}=\frac{TH}{DH+TH}\]Therefore,
\[f(N) = \frac{TH}{DH+TH}f(M)\]Since $\angle DFE=\angle CBH$ and $\angle DEF=\angle BCH$, $\triangle DEF\sim \triangle HCB\sim \triangle HH_BH_C$. Therefore,
\[\frac{TH}{DH+TH}=\frac{d(H,H_BH_C)}{2d(H,H_BH_C)+d(D,EF)}=\frac{H_BH_C}{2H_BH_C+EF}\]Let $MF=u$, $ME=v$, $MH_B=x$, $MH_C=y$. Furthermore, set $MD=1$. We have
\begin{align*}
2f(N) &= \frac{2x+2y}{2x+2y+u+v} \cdot (xu-vy) \\
f(F)+f(E) &= (u+v)(v+x-u-y)
\end{align*}Now, we relate $x$ with $v$ and $y$ with $u$.

Claim: $2x=\tfrac{1}{v}-v$; $2y=\tfrac{1}{u}-u$.
It is simple. We have by orthocenter-incenter duality that $\triangle DH_BH_C\sim \triangle ABC$ implying $\angle DH_CM=\angle C$ while $\angle MDF=90^\circ-\angle EFD=\tfrac{\angle C}{2}$ so
\[y=\cot{\angle C}=\frac{1-\tan^2\left(\frac{\angle C}{2}\right)}{2\tan\left(\frac{\angle C}{2}\right)} = \frac{1-u^2}{2u}\]and the result follows.
Therefore, we have
\begin{align*}
2f(N) &= \left(\frac{\frac{1}{v}-u+\frac{1}{u}-v}{\frac{1}{u}+\frac{1}{v}}\right) \left(xu-vy\right) \\
&= \frac{1}{2}\left(\frac{u+v-uv(u+v)}{u+v}\right) \left(\frac{u}{v}-\frac{v}{u}\right) \\
&= \frac{1}{2}\left(\frac{u+v-uv(u+v)}{u+v}\right) \left(\frac{(u-v)(u+v)}{uv}\right) \\
&= \frac{1}{2}\left(\frac{(u+v-uv(u+v))(u-v)}{uv}\right) \\
&= (u+v)\left(\frac{(1-uv)(u-v)}{2uv}\right) \\
&= (u+v)\left(\frac{u+uv^2}{2uv}-\frac{v+u^2v}{2uv}\right) \\
&= (u+v)\left(\frac{1+v^2}{2v}-\frac{1+u^2}{2u}\right) \\
&= (u+v)\left(\frac{1-v^2}{2v}+v-\frac{1-u^2}{2u}-u\right) \\
&= (u+v)\left(x+v-y-u\right)
\end{align*}and we are done.

Remark
This post has been edited 1 time. Last edited by awesomeming327., Dec 27, 2024, 10:04 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ihategeo_1969
181 posts
#75 • 1 Y
Y by cursed_tangent1434
We will define some new points.
$\bullet$ Let $\triangle DXY$ be the orthic triangle of $\triangle IBC$.
$\bullet$ Let $\triangle D'E'F'$ be the medial triangle of $\triangle DEF$.
$\bullet$ Let $T=\overline{ID'} \cap \overline{E'F'}$.

By Iran Lemma we have $X=\overline{BF'I} \cap \overline{EF}$ and $Y=\overline{CE'I} \cap \overline{EF}$.

Now consider the homothety at $I$ that sends $X \to F'$ and $Y \to E'$; see this also maps $(IXHY) \to (IF'DE')$ and so $H \to D$ and also $D' \to T$. This also means $\overline{D'P} \to \overline{T\infty_{D'P}}$.

So all we need to prove is $\overline{TD} \parallel \overline{D'P}$ which is trivial just because $D'F'DE'$ is a parallelogram and gliding principle or whatever.

Remark: I was doing this while watching ``Grave of the Fireflies" which is probably the saddest film ever. Idk why I said it, I just thought I should. Bye.
Z K Y
N Quick Reply
G
H
=
a