Y by Adventure10, Mango247
Let
be an equilateral triangle with side lenght is
.Let
is a point. Perpendiculars from
to
and
intersects with
and
at points
and
respectively. Perpendiculars from
and
to
intersects with
at points
and
. Prove that
![$$[E_1F_1]=\frac{3}{4}$$](//latex.artofproblemsolving.com/3/e/f/3efdf53cb3ff4b2a7fa60691f5aac9b3eeecf00c.png)



![$D \in [AB]$](http://latex.artofproblemsolving.com/0/7/9/07914568284f3822cf15730a6a0e868f0bd79996.png)

![$[AC]$](http://latex.artofproblemsolving.com/0/9/3/0936990e6625d65357ca51006c08c9fe3e04ba0c.png)
![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)
![$[AC]$](http://latex.artofproblemsolving.com/0/9/3/0936990e6625d65357ca51006c08c9fe3e04ba0c.png)
![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)




![$[AB]$](http://latex.artofproblemsolving.com/a/d/a/ada6f54288b7a2cdd299eba0055f8c8d19916b4b.png)
![$[AB]$](http://latex.artofproblemsolving.com/a/d/a/ada6f54288b7a2cdd299eba0055f8c8d19916b4b.png)


![$$[E_1F_1]=\frac{3}{4}$$](http://latex.artofproblemsolving.com/3/e/f/3efdf53cb3ff4b2a7fa60691f5aac9b3eeecf00c.png)
This post has been edited 1 time. Last edited by Emirhan, Jan 30, 2016, 6:01 PM
Reason: 404
Reason: 404