Y by
Recall that for any positive integer m, φ(m) denotes the number of positive integers less than m which are relatively
prime to m. Let n be an odd positive integer such that both φ(n) and φ(n + 1) are powers of two. Prove n + 1 is power
of two or n = 5.
prime to m. Let n be an odd positive integer such that both φ(n) and φ(n + 1) are powers of two. Prove n + 1 is power
of two or n = 5.