Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
9 Mathcounts Nats Winner Poll
DhruvJha   326
N 10 minutes ago by ZMB038
We've had these the past year, but not this one so lets create a poll.
326 replies
DhruvJha
Today at 12:19 AM
ZMB038
10 minutes ago
Mathcounts Countdown Round Hub
DhruvJha   84
N 20 minutes ago by vincentwant
We will post cdr updates for those who are blocked at school! Also put your current rankings and predictions.
84 replies
DhruvJha
Yesterday at 11:58 PM
vincentwant
20 minutes ago
2025 MATHCOUNTS State Hub
SirAppel   836
N 28 minutes ago by TiguhBabeHwo
Previous Years' "Hubs": (2022) (2023) (2024)Please Read

Now that it's April and we're allowed to discuss ...
[list=disc]
[*] CA: 43 (45 44 43 43 43 42 42 41 41 41)
[*] NJ: 43 (45 44 44 43 39 42 40 40 39 38) *
[*] NY: 42 (43 42 42 42 41 40 38 38 38 38 38 38)
[*] TX: 42 (43 43 43 42 42 40 40 38 38 38)
[*] MA: 41 (45 43 42 41)
[*] WA: 41 (41 45 42 41 41 41 41 41 41 40) *
[*]VA: 40 (41 40 40 40)
[*] FL: 39 (42 41 40 39 38 37 37)
[*] IN: 39 (41 40 40 39 36 35 35 35 34 34)
[*] NC: 39 (42 42 41 39)
[*] IL: 38 (41 40 39 38 38 38)
[*] OR: 38 (44 39 38 38)
[*] PA: 38 (41 40 40 38 38 37 36 36 34 34) *
[*] MD: 37 (43 39 39 37 37 37)
[*] AZ: 36 (40? 39? 39 36)
[*] CT: 36 (44 38 38 36 35 35 34 34 34 33 33 32 32 32 32)
[*] MI: 36 (39 41 41 36 37 37 36 36 36 36) *
[*] MN: 36 (40 36 36 36 35 35 35 34)
[*] CO: 35 (41 37 37 35 35 35 ?? 31 31 30) *
[*] GA: 35 (38 37 36 35 34 34 34 34 34 33)
[*] OH: 35 (41 37 36 35)
[*] AR: 34 (46 45 35 34 33 31 31 31 29 29)
[*] NV: 34 (41 38 ?? 34)
[*] TN: 34 (38 ?? ?? 34)
[*] WI: 34 (40 37 37 34 35 30 28 29 29 29) *
[*] HI: 32 (35 34 32 32)
[*] NH: 31 (42 35 33 31 30)
[*] DE: 30 (34 33 32 30 30 29 28 27 26? 24)
[*] SC: 30 (33 33 31 30)
[*] IA: 29 (33 30 31 29 29 29 29 29 29 29 29 29) *
[*] NE: 28 (34 30 28 28 27 27 26 26 25 25)
[*] SD: 22 (30 29 24 22 22 22 21 21 20 20)
[/list]
Cutoffs Unknown

* means that CDR is official in that state.

Notes

For those asking about the removal of the tiers, I'd like to quote Jason himself:
[quote=peace09]
learn from my mistakes
[/quote]

Help contribute by sharing your state's cutoffs!
836 replies
SirAppel
Apr 1, 2025
TiguhBabeHwo
28 minutes ago
CDR Scores List
MathRook7817   0
an hour ago
List of all the scores in the matchups put them here
0 replies
1 viewing
MathRook7817
an hour ago
0 replies
Integration Bee Kaizo
Calcul8er   63
N 3 hours ago by MS_asdfgzxcvb
Hey integration fans. I decided to collate some of my favourite and most evil integrals I've written into one big integration bee problem set. I've been entering integration bees since 2017 and I've been really getting hands on with the writing side of things over the last couple of years. I hope you'll enjoy!
63 replies
Calcul8er
Mar 2, 2025
MS_asdfgzxcvb
3 hours ago
Japanese high school Olympiad.
parkjungmin   1
N 3 hours ago by GreekIdiot
It's about the Japanese high school Olympiad.

If there are any students who are good at math, try solving it.
1 reply
parkjungmin
Yesterday at 5:25 AM
GreekIdiot
3 hours ago
Already posted in HSO, too difficult
GreekIdiot   0
4 hours ago
Source: own
Find all integer triplets that satisfy the equation $5^x-2^y=z^3$.
0 replies
GreekIdiot
4 hours ago
0 replies
Square on Cf
GreekIdiot   0
4 hours ago
Let $f$ be a continuous function defined on $[0,1]$ with $f(0)=f(1)=0$ and $f(t)>0 \: \forall \: t \in (0,1)$. We define the point $X'$ to be the projection of point $X$ on the x-axis. Prove that there exist points $A, B \in C_f$ such that $ABB'A'$ is a square.
0 replies
GreekIdiot
4 hours ago
0 replies
Japanese Olympiad
parkjungmin   4
N Today at 8:55 AM by parkjungmin
It's about the Japanese Olympiad

I can't solve it no matter how much I think about it.

If there are people who are good at math

Please help me.
4 replies
parkjungmin
Saturday at 6:51 PM
parkjungmin
Today at 8:55 AM
ISI UGB 2025 P3
SomeonecoolLovesMaths   11
N Today at 8:21 AM by Levieee
Source: ISI UGB 2025 P3
Suppose $f : [0,1] \longrightarrow \mathbb{R}$ is differentiable with $f(0) = 0$. If $|f'(x) | \leq f(x)$ for all $x \in [0,1]$, then show that $f(x) = 0$ for all $x$.
11 replies
SomeonecoolLovesMaths
Yesterday at 11:32 AM
Levieee
Today at 8:21 AM
D1020 : Special functional equation
Dattier   4
N Today at 7:57 AM by Dattier
Source: les dattes à Dattier
1) Are there any $(f,g) \in C(\mathbb R,\mathbb R_+)$ increasing with
$$\forall x \in \mathbb R, f(x)(\cos(x)+3/2)+g(x)(\sin(x)+3/2)=\exp(x)$$?

2) Are there any $(f,g) \in C(\mathbb R,\mathbb R_+)$ increasing with
$$\forall x \in \mathbb R, f(x)(\cos(x)+3/2)+g(x)(\sin(x)+3/2)=\exp(x/2)$$?
4 replies
Dattier
Apr 24, 2025
Dattier
Today at 7:57 AM
Mathematical expectation 1
Tricky123   1
N Today at 6:57 AM by navier3072
X is continuous random variable having spectrum
$(-\infty,\infty) $ and the distribution function is $F(x)$ then
$E(X)=\int_{0}^{\infty}(1-F(x)-F(-x))dx$ and find the expression of $V(x)$

Ans:- $V(x)=\int_{0}^{\infty}(2x(1-F(x)+F(-x))dx-m^{2}$

How to solve help me
1 reply
Tricky123
Yesterday at 9:51 AM
navier3072
Today at 6:57 AM
Tough integral
Martin.s   0
Today at 4:00 AM
$$\int_0^{\pi/2}\ln(\tan(\theta/2))
\;\frac{4\cos\theta\cos(2\theta)}{4\sin^4\theta+1}\,d\theta.$$
0 replies
Martin.s
Today at 4:00 AM
0 replies
Minimum value
Martin.s   3
N Yesterday at 5:24 PM by Martin.s
What is the minimum value of
$$
\frac{|a + b + c + d| \left( |a - b| |b - c| |c - d| + |b - a| |c - a| |d - a| \right)}{|a - b| |b - c| |c - d| |d - a|}
$$over all triples $a, b, c, d$ of distinct real numbers such that
$a^2 + b^2 + c^2 + d^2 = 3(ab + bc + cd + da).$

3 replies
Martin.s
Oct 17, 2024
Martin.s
Yesterday at 5:24 PM
random problem i just thought about one day
ceilingfan404   27
N Apr 29, 2025 by PikaPika999
i don't even know if this is solvable
Prove that there are finite/infinite powers of 2 where all the digits are also powers of 2. (For example, $4$ and $128$ are numbers that work, but $64$ and $1024$ don't work.)
27 replies
ceilingfan404
Apr 20, 2025
PikaPika999
Apr 29, 2025
random problem i just thought about one day
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ceilingfan404
1139 posts
#1 • 4 Y
Y by aidan0626, e_is_2.71828, Exponent11, PikaPika999
i don't even know if this is solvable
Prove that there are finite/infinite powers of 2 where all the digits are also powers of 2. (For example, $4$ and $128$ are numbers that work, but $64$ and $1024$ don't work.)
This post has been edited 1 time. Last edited by ceilingfan404, Apr 20, 2025, 7:55 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
huajun78
71 posts
#2 • 1 Y
Y by PikaPika999
well as the number gets bigger, there are more digits, so it's less likely that ALL the digits will be a power of 2 (1, 2, 4, 8).

for the first 20 powers of 2 after $2^{10}$ ($2^{11}$ to $2^{30}$), none of them satisfy the condition (I tested all of them), so it's very unlikely that numbers with even more digits will.

I don't know how to prove this but that fact suggests that there are only a finite number.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vincentwant
1426 posts
#3 • 1 Y
Y by PikaPika999
if the number is greater than 512 then the last four digits must be 2112, 4112, 8112, 2224, 4224, 8224, 1424, 1824, 2144, 4144, 8144, 1184, 2128, 4128, 8128, 1248, 2448, 4448, 8448, 2848, 4848, 8848, 2288, 4288, 8288, 1488, 1888

dont think this helps
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Yummo
299 posts
#4 • 1 Y
Y by PikaPika999
@above, what about 1024?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vincentwant
1426 posts
#5 • 1 Y
Y by PikaPika999
Yummo wrote:
@above, what about 1024?

0 is not a power of 2
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
e_is_2.71828
222 posts
#6 • 1 Y
Y by PikaPika999
ceilingfan404 wrote:
i don't even know if this is solvable
Prove that there are finite/infinite powers of 2 where all the digits are also powers of 2. (For example, $4$ and $128$ are numbers that work, but $64$ and $1024$ don't work.)

I won't look into it completely, but we can start somewhere. We'll see if it is possible to "generate" a formula for these numbers. So let $n$ be a $k$-digit number such that $n=a_ka_{k-1}...a_2a_1a_0$. Then $n=10^ka_k+10^{k-1}a_k-1...+10a_1+a_0$, and note for all $i$ $a_i=2^b$, for some $b$. So, $n=10^k \cdot 2^{b_k}+10^{k-1}\cdot 2^{b_{k-1}}+...+10\cdot 2^{b_1}+2^{b_0}$. From there we need also $n=2^c$ for some $c$, and presumably we can take the largest $b_i$, factor it out, and we need the remaining sum to also be a power of $2$. Someone can try working it out from here, I think I started it off well enough.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
wangzrpi
159 posts
#7
Y by
See
https://math.stackexchange.com/questions/2238383/how-many-powers-of-2-have-only-0-or-powers-of-2-as-digits
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
e_is_2.71828
222 posts
#8
Y by
Definitely not middle school math
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
e_is_2.71828
222 posts
#10 • 1 Y
Y by PikaPika999
K1mchi_ wrote:
e_is_2.71828 wrote:
Definitely not middle school math

its fine

doesn’t need to be msm curriculum
just for msm

if u can’t do it skill issue


"This problem is unlikely to have a simple proof, because the following holds:

Theorem. For any k, there exists a power of 2 whose first k digits and last k digits are all either 1 or 2.
Proof. We begin with looking at the last digits, taking 2nmod10k. For sufficiently large n, 2n≡0(mod2k). Since 2 is a primitive root modulo 5 and modulo 52, it is a primitive root modulo 5k for any k (Wikipedia), so we can have 2n≡b(mod10k) for any b such that b≡0(mod2k).

This is possible to accomplish with only 1 and 2 as digits. We start with b1=2 for k=1, and extend bk−1≡0(mod2k−1) to bk≡0(mod2k) by the rule:

If bk−1≡0(mod2k), take bk=2⋅10k−1+bk−1.
If bk−1≡2k−1(mod2k), take bk=10k−1+bk−1.
(This works because 10k−1≡2k−1(mod2)k.)

There is a unique sequence of digits ending …211111212122112 that we obtain in this way; reversed, it is A023396 in the OEIS.

To make sure that 2n ends in bk, there will be some condition along the lines of
n≡c(modϕ(5k))
or n=c+n′ϕ(5k) for some n′. From there, getting the first k digits to be 1 or 2 is easy along the lines of a recently popular question. We might as well aim for the sequence 111…111k, because we can. To do this, we want
log101.11…1<{(c+n′⋅ϕ(5k))log102}<log101.11…2
where {x} denotes the fractional part of x. This translates into a condition of the form
{n⋅log102ϕ(5k)}∈Ik
for some interval Ik, which we know is possible because α=log102ϕ(5k) is irrational, and therefore the sequence {α},{2α},{3α},… is dense in [0,1].

This concludes the proof.

Instead of the digits {1,2} we could have used the digits {1,4} or {1,8} and given a similar proof; if we multiply the solution to one of these by 2 or 4, we get a power of 2 whose first and last digits come from the set {2,4} or {2,8} or {4,8}. (We can't do this with just the set {0,1} or {0,2} or {0,4} or {0,8}, because eventually we can rule these out by a modular condition.)

It's of course still almost certain that there's no large power of 2 entirely made from the digits {0,1,2,4,8}, but you'd have to say something about the "middle digits" of such a power, which is much harder."

From the stack exchange.
This post has been edited 1 time. Last edited by e_is_2.71828, Apr 24, 2025, 6:01 PM
Reason: Added
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Andrew2019
2312 posts
#12 • 2 Y
Y by e_is_2.71828, Demetri
K1mchi_ wrote:
e_is_2.71828 wrote:
Definitely not middle school math

its fine

doesn’t need to be msm curriculum
just for msm

if u can’t do it skill issue

it would be crazy if someone who has only done the amc 8 and sold on it says others have a skill issue
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
maromex
186 posts
#13
Y by
There is a related question: Does the base-$3$ expression of $2^n$ always have a digit equal to $2$ for sufficiently large $n$? If I recall correctly, this problem is unsolved.

The problem discussed in this topic seems similar to this question, and I don't see why it would be solvable with currently known techniques.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
e_is_2.71828
222 posts
#14 • 1 Y
Y by mithu542
I wouldn't listen to someone who can't even spell figure ...
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
maxamc
576 posts
#15
Y by
e_is_2.71828 wrote:
I wouldn't listen to someone who can't even spell figure ...

K1mchi_ is always right 100000 aura.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
K1mchi_
85 posts
#16
Y by
Andrew2019 wrote:
K1mchi_ wrote:
e_is_2.71828 wrote:
Definitely not middle school math

its fine

doesn’t need to be msm curriculum
just for msm

if u can’t do it skill issue

it would be crazy if someone who has only done the amc 8 and sold on it says others have a skill issue

slander

i just dont do competitive math

hate me if u like
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MathPerson12321
3799 posts
#17 • 2 Y
Y by e_is_2.71828, mithu542
#11
why dont u?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
K1mchi_
85 posts
#18
Y by
MathPerson12321 wrote:
#11
why dont u?

just quote me


i have better things to do with my time than math rn

i’ll do u the service of enlightenment if i ever find time
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Aaronjudgeisgoat
899 posts
#19
Y by
K1mchi_ wrote:
MathPerson12321 wrote:
#11
why dont u?

just quote me


i have better things to do with my time than math rn

i’ll do u the service of enlightenment if i ever find time

you only have 105 posts, but i feel like ive seen you everywhere
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MathPerson12321
3799 posts
#22
Y by
@bove stop trying to say ur better
do i see mop quals trying to bring me down? no
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
RollingPanda4616
258 posts
#24 • 1 Y
Y by PikaPika999
K3mchi_ wrote:
MathPerson12321 wrote:
@bove stop trying to say ur better
do i see mop quals trying to bring me down? no

so? im not trying to bring u down u still bring urself down bc ur very sensitive

dont we celebrate intelligence in our society?

alt alert
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
RollingPanda4616
258 posts
#26 • 2 Y
Y by PikaPika999, e_is_2.71828
hey

yes
$~~~~~~$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
valisaxieamc
442 posts
#27 • 3 Y
Y by RollingPanda4616, PikaPika999, e_is_2.71828
Bro imagine making alts cause you fear that aops is going to ban you
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
RollingPanda4616
258 posts
#28 • 1 Y
Y by PikaPika999
valisaxieamc wrote:
Bro imagine making alts cause you fear that aops is going to ban you

:rotfl:

anyway let's get this thread back on track

I think you might need to break up the digits and use the prime factorization. (like a 3 digit number $abc$ would be broken down into $a \cdot 2^2 5^2 + b \cdot 2^1 5^1 + c$ and since a, b,c are powers of 2, you could just look at the 5s?) idk how to continue though.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
maromex
186 posts
#29
Y by
I'll say this again:
maromex wrote:
There is a related question: Does the base-$3$ expression of $2^n$ always have a digit equal to $2$ for sufficiently large $n$? If I recall correctly, this problem is unsolved.

The problem discussed in this topic seems similar to this question, and I don't see why it would be solvable with currently known techniques.

Unless a problem about digits has good reason to be solvable with currently known techniques, it's probably not solvable, even if the answer seems obviously true/false at first.

Here's another unsolved problem related to the topic of this thread: For $n > 86$, does $2^n$ always have a $0$ in base $10$?
This post has been edited 1 time. Last edited by maromex, Apr 26, 2025, 7:16 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
PikaPika999
1781 posts
#30
Y by
K1mchi_ wrote:
e_is_2.71828 wrote:
Definitely not middle school math

its fine

doesn’t need to be msm curriculum
just for msm

if u can’t do it skill issue

but if the forum is literally called msm, then shouldn't it be msm? plus, if it is harder than msm, there are high school math and college math and high school olympiads, and it could've been placed there?

k1mchi_

not nice
valisaxieamc wrote:
Bro imagine making alts cause you fear that aops is going to ban you

lol imo aops should use ip bans
This post has been edited 1 time. Last edited by PikaPika999, Apr 27, 2025, 11:09 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
PikaPika999
1781 posts
#31 • 2 Y
Y by RollingPanda4616, Pengu14
K3mchi_ wrote:
MathPerson12321 wrote:
@bove stop trying to say ur better
do i see mop quals trying to bring me down? no

so? im not trying to bring u down u still bring urself down bc ur very sensitive

dont we celebrate intelligence in our society?

1. True intelligence shines through clarity and simplicity, not overcomplication.
2. Intelligence isn’t just about flaunting knowledge—it’s also about understanding, humility, and connection.
3. True intelligence lies not in power over others, but in empowering those around us.
4. Creativity/intelligence isn’t just about thinking outside the box—it’s about reshaping the box entirely.
5. Leadership isn’t a title—it’s the trust you earn and the influence you wield wisely.
6. Intelligence is not in the answers we give, but in the questions we dare to ask.
7. Intelligence grows when we challenge our own assumptions, not just those of others.
8. The hallmark of intelligence is recognizing that there’s always more to learn.
9. Intelligence flourishes in collaboration, not isolation.
This post has been edited 2 times. Last edited by PikaPika999, Apr 27, 2025, 11:15 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
valisaxieamc
442 posts
#33 • 1 Y
Y by PikaPika999
I completely agree with PikaPika but like RollingPanda said, we probably should get back on topic. I mean the kimchi dude is finally leaving us alone and hopefully getting a life so I'll take it as a win
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fake123
93 posts
#34
Y by
bro why are you guys raging over some random kid why can't you just ignore him
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
PikaPika999
1781 posts
#35
Y by
fake123 wrote:
bro why are you guys raging over some random kid why can't you just ignore him

we're not raging over "some random kid" who can be ignored (sorry if this sounds harsher than it is)

they start flamewars on multiple different threads. This is how my 1000th post thread got locked :furious

also, they created multiple different alts, which is explicitly said to be against the rules (probably because of getting postbanned from this sheriff

sry if this sounds harsher than i meant to be
Z K Y
N Quick Reply
G
H
=
a