ka May Highlights and 2025 AoPS Online Class Information
jlacosta0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.
Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.
Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!
Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.
Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19
Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)
Intermediate: Grades 8-12
Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21
AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:
To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.
More specifically:
For new threads:
a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.
Examples: Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿) Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"
b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.
Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".
c) Good problem statement:
Some recent really bad post was:
[quote][/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.
For answers to already existing threads:
d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve , do not answer with " is a solution" only. Either you post any kind of proof or at least something unexpected (like " is the smallest solution). Someone that does not see that is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.
e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.
To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!
Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).
The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
1. ABC a triangle
2. 0 the circumcircle
3. Tb, Tc the tangents to 0 wrt. B, C
4. D the point of intersection of Tb and Tc
5. B', C' the symmetrics of B, C wrt AC, AB
6. 1b, 1c the circumcircles of the triangles BB'D, CC'D.
Given circle (O) and chord AB with different diameters. The tangents of circle (O) at A and B intersect at point P. On the small arc AB, take point C so that triangle CAB is not isosceles. The lines CA and BP intersect at D, BC and AP intersect at E. Prove that the centers of the circles circumscribing triangles ACE, BCD and OPC are collinear.
I just finished intro to number theory and im going to do algebra b next, but to stay on a good schedule im going to have to afk for 1 month, is there anything useful in that time? i figured mathdash would be nice or mc trainer, but it wasnt as fun as the class itself
thanks in advance!
also some sort of advice to stay away from btd6 when studying would be helpful
I'm really trying to improve my math abilities because next year is my last chance to qual for mathcounts natitionals, I've gotten The Art of Problem Solving Volume 1: The basics and The Three Year Mathcounts Marathon, I've been working on Alcumus and Mathcounts trainer, and I'm going to take a Mathcounts advanced course in the fall, but are there any other things you guys use to get better?
I need synthetic solution:
Given an acute triangle with orthocenter .Let and be the altitudes of triangle.Let and be reflections of points across the line , respectively.Let and be the midpoints of and , respectively.Let and .Prove that and are collinear.
Source: Iranian TST 2018, first exam, day1, problem 3
In triangle let be the midpoint of . Let be a circle inside of and is tangent to at , respectively. The tangents from to meet at such that and lie on the same side of . Let and . If prove that is tangent to .
Let and be the incircle and circumcircle of the acute triangle , respectively. Draw a square so that all of its sides are tangent to , and , are both on . Extend and , intersecting at and , respectively. Prove that and intersects on .
Let ABC be an acute triangle. The altitudes from B and C intersect the sides AC and AB at E and F, respectively. The internal bisector of ∠A intersects BE and CF at T and S, respectively. The circles with diameters AT and AS intersect the circumcircle of ABC at X and Y, respectively. Prove that XY, EF, and BC meet at the exsimilicenter of BTX and CSY
Source: ELMO Shortlist 2013: Problem G9, by Allen Liu
Let be a cyclic quadrilateral inscribed in circle whose diagonals meet at . Lines and meet at . Segment intersects at . Lines and meet at , and lines and meet at . Prove that and concur with the tangent to at .
Let be an integer greater than . For a positive integer , let . Suppose that there exists a -element set such that
(a) each element of is an -element subset of ;
(b) each pair of elements of shares at most one common element;
and
(c) each element of is contained in exactly two elements of .
Determine the maximum possible value of in terms of .
apparently, nobody solved target p6 but looking back it really wasn't too bad
[quote=2025 target p6]
Person A and Person B are playing tennis, and Person A has a 70% chance of winning each individual point. To win a tennis game, one needs at least 4 points and at least a 2-point lead over the other person. What is the probability that Person A wins?[/quote]
(I forgor the names)
sol
Notice that we have 4 different cases:
For cases 2 and 3 recall that Person A must win the last point, or else we overcount, and hence the minus 1. Case 1: Person A wins 4:0
This has probability of occurring, Person A wins.
Case 2: Person A wins 4:1
This has probability of occurring, Person A wins.
Case 3: Person A wins 4:2
This has probability of occurring, Person A wins.
Case 4: Person A ties 3:3
This has probability of occurring. Now, note that there is no possible way for someone to win with less than points at this point, so we can ignore that condition.
Suppose that when the score is tied, Person A has a chance of obtaining a -or-higher point lead over Person B. Then we have Solving yields .
Thus, the desired value is
what actually happened during the test
I blanked when I read the "at least 4 points" condition. When I finally figured out what to do, there was around 40 seconds left so I ended up putting (as a percent) as a blind guess.
In triangle , point lies on side and point lies on side . Let and be points on segments and , respectively, such that is parallel to . Let be a point on line , such that lies strictly between and , and . Similarly, let be the point on line , such that lies strictly between and , and .
Y byAdventure10, Mango247, Owen314159, DhruvJha, Exponent11
Also, one common use of factorials is to determine the number of ways we can arrange n books on a shelf. For example, the way we find out how many ways we can arrange 5 books is 5! or 120 ways. If we have 0 books, then there is only 1 way to arrange them, which is do nothing
Sorry if this is a bit off topic for this but because the minus sign isn't part of the number. Shouldn't it therefore be ? Or do we not need the brackets?
Intuitive solution,
A factorial represents the number of ways you can arrange books on a shelf. If there are no books, then all of the books are still arranged, thus there is 1 way to arrange zero books on a shelf, starting position.
Middel School Sloution,
define for we know, Although reversing, So to get to the last factorial, we divided by the number, ie to get from , we divided going further
High school grade solution
Consider for this is a much more formal definition for a factorial.
We find thus