Y by Adventure10
In quadrilateral
sides
and
are parallel. In each of the four vertices we draw an angular bisector. The angular bisectors of angles
and
intersect in point
, those of angles
and
intersect in point
, those of angles
and
intersect in point
, and those of angles
and
intersect in point S. Suppose that
is parallel to
. Prove that
.
![[asy]
unitsize(1.2 cm);
pair A, B, C, D, P, Q, R, S;
A = (0,0);
D = (3,0);
B = (0.8,1.5);
C = (3.2,1.5);
S = extension(A, incenter(A,B,D), D, incenter(A,C,D));
Q = extension(B, incenter(A,B,C), C, C + incenter(A,B,D) - A);
P = extension(A, S, B, Q);
R = extension(D, S, C, Q);
draw(A--D--C--B--cycle);
draw(B--Q--C);
draw(A--S--D);
dot("$A$", A, SW);
dot("$B$", B, NW);
dot("$C$", C, NE);
dot("$D$", D, SE);
dot("$P$", P, dir(90));
dot("$Q$", Q, dir(270));
dot("$R$", R, dir(90));
dot("$S$", S, dir(90));
[/asy]](//latex.artofproblemsolving.com/a/7/d/a7d4a098c39d06d4bfd497e2c522d54d30b9ff26.png)
Attention: the figure is not drawn to scale.

















![[asy]
unitsize(1.2 cm);
pair A, B, C, D, P, Q, R, S;
A = (0,0);
D = (3,0);
B = (0.8,1.5);
C = (3.2,1.5);
S = extension(A, incenter(A,B,D), D, incenter(A,C,D));
Q = extension(B, incenter(A,B,C), C, C + incenter(A,B,D) - A);
P = extension(A, S, B, Q);
R = extension(D, S, C, Q);
draw(A--D--C--B--cycle);
draw(B--Q--C);
draw(A--S--D);
dot("$A$", A, SW);
dot("$B$", B, NW);
dot("$C$", C, NE);
dot("$D$", D, SE);
dot("$P$", P, dir(90));
dot("$Q$", Q, dir(270));
dot("$R$", R, dir(90));
dot("$S$", S, dir(90));
[/asy]](http://latex.artofproblemsolving.com/a/7/d/a7d4a098c39d06d4bfd497e2c522d54d30b9ff26.png)
Attention: the figure is not drawn to scale.
This post has been edited 2 times. Last edited by nsato, Feb 14, 2023, 12:22 AM