Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Wednesday at 3:18 PM
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Wednesday at 3:18 PM
0 replies
Bashing??
John_Mgr   0
6 minutes ago
I have learned little about what bashing mean as i am planning to start geo, feels like its less effort required and doesnt need much knowledge about the synthetic solutions?
what do you guys recommend ? also state the major difference of them... especially of bashing pros and cons..
0 replies
1 viewing
John_Mgr
6 minutes ago
0 replies
1 area = 2025 points
giangtruong13   1
N 10 minutes ago by kiyoras_2001
In a plane give a set $H$ that has 8097 distinct points with area of a triangle that has 3 points belong to $H$ all $ \leq 1$. Prove that there exists a triangle $G$ that has the area $\leq 1 $ contains at least 2025 points that belong to $H$( each of that 2025 points can be inside the triangle or lie on the edge of triangle $G$)X
1 reply
giangtruong13
5 hours ago
kiyoras_2001
10 minutes ago
A board with crosses that we color
nAalniaOMliO   2
N 14 minutes ago by CHESSR1DER
Source: Belarusian National Olympiad 2025
In some cells of the table $2025 \times 2025$ crosses are placed. A set of 2025 cells we will call balanced if no two of them are in the same row or column. It is known that any balanced set has at least $k$ crosses.
Find the minimal $k$ for which it is always possible to color crosses in two colors such that any balanced set has crosses of both colors.
2 replies
nAalniaOMliO
Mar 28, 2025
CHESSR1DER
14 minutes ago
Geometry Finale: Incircles and concurrency
lminsl   173
N 21 minutes ago by Parsia--
Source: IMO 2019 Problem 6
Let $I$ be the incentre of acute triangle $ABC$ with $AB\neq AC$. The incircle $\omega$ of $ABC$ is tangent to sides $BC, CA$, and $AB$ at $D, E,$ and $F$, respectively. The line through $D$ perpendicular to $EF$ meets $\omega$ at $R$. Line $AR$ meets $\omega$ again at $P$. The circumcircles of triangle $PCE$ and $PBF$ meet again at $Q$.

Prove that lines $DI$ and $PQ$ meet on the line through $A$ perpendicular to $AI$.

Proposed by Anant Mudgal, India
173 replies
lminsl
Jul 17, 2019
Parsia--
21 minutes ago
No more topics!
Number of permutative
nmtruong1986   8
N Jun 7, 2020 by Brudder
Source: When solving a problem
Find out the number of permutations of $ n$ first positive integer such that they contain no block $ (i,i + 1)$ or $ (i + 1,i)$ for all $ i$.
8 replies
nmtruong1986
Dec 14, 2005
Brudder
Jun 7, 2020
Number of permutative
G H J
Source: When solving a problem
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nmtruong1986
186 posts
#1 • 2 Y
Y by Adventure10, Mango247
Find out the number of permutations of $ n$ first positive integer such that they contain no block $ (i,i + 1)$ or $ (i + 1,i)$ for all $ i$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
maxal
629 posts
#2 • 1 Y
Y by Adventure10
By inclusion-exclusion it is
\[ n! + \sum_{k=1}^n (-1)^k \sum_{t=1}^k {k-1\choose t-1}{n-k\choose t} 2^t (n-k)!  \]
See also sequence A002464 for recurrent formula and other references.
This post has been edited 1 time. Last edited by maxal, Aug 9, 2013, 1:45 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
keira_khtn
485 posts
#3 • 2 Y
Y by Adventure10, Mango247
maxal wrote:
By inclusion-exclusion it is
\[ n! + \sum_{k=1}^n (-1)^k \sum_{t=1}^k {k-1\choose t-1}{n-k\choose t} 2^t (n-k)!  \]
.
Could you explain me how you got it???
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
maxal
629 posts
#4 • 2 Y
Y by Adventure10, Mango247
k stands for the number of pairs (i,i+1) that are adjacent in the permutation, such pairs form chains (e.g., if i,i+1 are adjacent and i+1,i+2 are adjacent then i,i+1,i+2 is a chain in the permutation), and t stands for the number of such chains. Summands are the number of permutations with k adjacent pairs forming t chains. In particular,
${k-1\choose t-1}$ is the number of distributions of k adacent pairs among t chains such that each chain contains at least one pair;
${n-k\choose t}$ is the number of ways to select t chains of total length k+t out of elements $1,2,\dots,n$;
$2^t$ is the number of ways to orient the chains in the permutation (e.g., a chain i,i+1,i+2 can appear in the permutation as i,i+1,i+2 or as i+2,i+1,i);
$(n-k)!$ is the number of permutations of n-k-t elements not included into the chains and t chains (chains here can be viewed as single elements, hence, it's simply the number of permutations of n-k-t+t=n-k elements).
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
keira_khtn
485 posts
#5 • 2 Y
Y by Adventure10, Mango247
As I understand now:$(^{k-1}_{t-1})$ is number of oisitive intergral roots of the Diophant equation:$x_1+x_2+...+x_t=k$.
Is it right??
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Bluesea
59 posts
#6 • 2 Y
Y by Adventure10, Mango247
it's the way to divide k pairs into t chain.I use alsi this way to solve this pro:
http://www.mathlinks.ro/Forum/viewtopic.php?t=4110
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
maxal
629 posts
#7 • 2 Y
Y by Adventure10, Mango247
keira_khtn wrote:
As I understand now:$(^{k-1}_{t-1})$ is number of oisitive intergral roots of the Diophant equation:$x_1+x_2+...+x_t=k$.
Is it right??
That's correct.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Stormersyle
2785 posts
#8 • 3 Y
Y by fidgetboss_4000, RadiantCheddar, IAmTheHazard
bruh $     $
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Brudder
416 posts
#9 • 2 Y
Y by fidgetboss_4000, IAmTheHazard
wish id seen this like 2 days ago
Z K Y
N Quick Reply
G
H
=
a