Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
Calculating sum of the numbers
Sadigly   5
N an hour ago by aokmh3n2i2rt
Source: Azerbaijan Junior MO 2025 P4
A $3\times3$ square is filled with numbers $1;2;3...;9$.The numbers inside four $2\times2$ squares is summed,and arranged in an increasing order. Is it possible to obtain the following sequences as a result of this operation?

$\text{a)}$ $24,24,25,25$

$\text{b)}$ $20,23,26,29$
5 replies
Sadigly
May 9, 2025
aokmh3n2i2rt
an hour ago
Swap to the symmedian
Noob_at_math_69_level   7
N an hour ago by awesomeming327.
Source: DGO 2023 Team P1
Let $\triangle{ABC}$ be a triangle with points $U,V$ lie on the perpendicular bisector of $BC$ such that $B,U,V,C$ lie on a circle. Suppose $UD,UE,UF$ are perpendicular to sides $BC,AC,AB$ at points $D,E,F.$ The tangent lines from points $E,F$ to the circumcircle of $\triangle{DEF}$ intersects at point $S.$ Prove that: $AV,DS$ are parallel.

Proposed by Paramizo Dicrominique
7 replies
Noob_at_math_69_level
Dec 18, 2023
awesomeming327.
an hour ago
Find (AB * CD) / (AC * BD) & prove orthogonality of circles
Maverick   15
N an hour ago by Ilikeminecraft
Source: IMO 1993, Day 1, Problem 2
Let $A$, $B$, $C$, $D$ be four points in the plane, with $C$ and $D$ on the same side of the line $AB$, such that $AC \cdot BD = AD \cdot BC$ and $\angle ADB = 90^{\circ}+\angle ACB$. Find the ratio
\[\frac{AB \cdot CD}{AC \cdot BD}, \]
and prove that the circumcircles of the triangles $ACD$ and $BCD$ are orthogonal. (Intersecting circles are said to be orthogonal if at either common point their tangents are perpendicuar. Thus, proving that the circumcircles of the triangles $ACD$ and $BCD$ are orthogonal is equivalent to proving that the tangents to the circumcircles of the triangles $ACD$ and $BCD$ at the point $C$ are perpendicular.)
15 replies
Maverick
Jul 13, 2004
Ilikeminecraft
an hour ago
f(x+f(x)+f(y))=x+f(x+y)
dangerousliri   10
N 2 hours ago by jasperE3
Source: FEOO, Shortlist A5
Find all functions $f:\mathbb{R}^+\rightarrow\mathbb{R}^+$ such that for any positive real numbers $x$ and $y$,
$$f(x+f(x)+f(y))=x+f(x+y)$$Proposed by Athanasios Kontogeorgis, Grecce, and Dorlir Ahmeti, Kosovo
10 replies
dangerousliri
May 31, 2020
jasperE3
2 hours ago
n-variable inequality
ABCDE   66
N 2 hours ago by ND_
Source: 2015 IMO Shortlist A1, Original 2015 IMO #5
Suppose that a sequence $a_1,a_2,\ldots$ of positive real numbers satisfies \[a_{k+1}\geq\frac{ka_k}{a_k^2+(k-1)}\]for every positive integer $k$. Prove that $a_1+a_2+\ldots+a_n\geq n$ for every $n\geq2$.
66 replies
+1 w
ABCDE
Jul 7, 2016
ND_
2 hours ago
Euler Line Madness
raxu   75
N 3 hours ago by lakshya2009
Source: TSTST 2015 Problem 2
Let ABC be a scalene triangle. Let $K_a$, $L_a$ and $M_a$ be the respective intersections with BC of the internal angle bisector, external angle bisector, and the median from A. The circumcircle of $AK_aL_a$ intersects $AM_a$ a second time at point $X_a$ different from A. Define $X_b$ and $X_c$ analogously. Prove that the circumcenter of $X_aX_bX_c$ lies on the Euler line of ABC.
(The Euler line of ABC is the line passing through the circumcenter, centroid, and orthocenter of ABC.)

Proposed by Ivan Borsenco
75 replies
raxu
Jun 26, 2015
lakshya2009
3 hours ago
Own made functional equation
Primeniyazidayi   8
N 3 hours ago by MathsII-enjoy
Source: own(probably)
Find all functions $f:R \rightarrow R$ such that $xf(x^2+2f(y)-yf(x))=f(x)^3-f(y)(f(x^2)-2f(x))$ for all $x,y \in \mathbb{R}$
8 replies
Primeniyazidayi
May 26, 2025
MathsII-enjoy
3 hours ago
IMO ShortList 2002, geometry problem 7
orl   110
N 4 hours ago by SimplisticFormulas
Source: IMO ShortList 2002, geometry problem 7
The incircle $ \Omega$ of the acute-angled triangle $ ABC$ is tangent to its side $ BC$ at a point $ K$. Let $ AD$ be an altitude of triangle $ ABC$, and let $ M$ be the midpoint of the segment $ AD$. If $ N$ is the common point of the circle $ \Omega$ and the line $ KM$ (distinct from $ K$), then prove that the incircle $ \Omega$ and the circumcircle of triangle $ BCN$ are tangent to each other at the point $ N$.
110 replies
orl
Sep 28, 2004
SimplisticFormulas
4 hours ago
Cute NT Problem
M11100111001Y1R   6
N 4 hours ago by X.Allaberdiyev
Source: Iran TST 2025 Test 4 Problem 1
A number \( n \) is called lucky if it has at least two distinct prime divisors and can be written in the form:
\[
n = p_1^{\alpha_1} + \cdots + p_k^{\alpha_k}
\]where \( p_1, \dots, p_k \) are distinct prime numbers that divide \( n \). (Note: it is possible that \( n \) has other prime divisors not among \( p_1, \dots, p_k \).) Prove that for every prime number \( p \), there exists a lucky number \( n \) such that \( p \mid n \).
6 replies
M11100111001Y1R
May 27, 2025
X.Allaberdiyev
4 hours ago
China MO 2021 P6
NTssu   23
N 4 hours ago by bin_sherlo
Source: CMO 2021 P6
Find $f: \mathbb{Z}_+ \rightarrow \mathbb{Z}_+$, such that for any $x,y \in \mathbb{Z}_+$, $$f(f(x)+y)\mid x+f(y).$$
23 replies
NTssu
Nov 25, 2020
bin_sherlo
4 hours ago
nice system of equations
outback   4
N Apr 23, 2025 by Raj_singh1432
Solve in positive numbers the system

$ x_1+\frac{1}{x_2}=4, x_2+\frac{1}{x_3}=1, x_3+\frac{1}{x_4}=4, ..., x_{99}+\frac{1}{x_{100}}=4, x_{100}+\frac{1}{x_1}=1$
4 replies
outback
Oct 8, 2008
Raj_singh1432
Apr 23, 2025
nice system of equations
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
outback
293 posts
#1 • 2 Y
Y by Adventure10, Mango247
Solve in positive numbers the system

$ x_1+\frac{1}{x_2}=4, x_2+\frac{1}{x_3}=1, x_3+\frac{1}{x_4}=4, ..., x_{99}+\frac{1}{x_{100}}=4, x_{100}+\frac{1}{x_1}=1$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Bovy11
151 posts
#2 • 3 Y
Y by Adventure10, Mango247, ehuseyinyigit
outback wrote:
Solve in positive numbers the system

$ x_1 + \frac {1}{x_2} = 4, x_2 + \frac {1}{x_3} = 1, x_3 + \frac {1}{x_4} = 4, ..., x_{99} + \frac {1}{x_{100}} = 4, x_{100} + \frac {1}{x_1} = 1$

solution
This post has been edited 2 times. Last edited by Bovy11, Oct 9, 2008, 1:33 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
t0rajir0u
12167 posts
#3 • 2 Y
Y by Adventure10, Mango247
Was $ x_{100} + \frac{1}{x_1} = 1$ a typo?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
outback
293 posts
#4 • 2 Y
Y by Adventure10, Mango247
t0rajir0u wrote:
Was $ x_{100} + \frac {1}{x_1} = 1$ a typo?

Why do you think it is?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Raj_singh1432
3 posts
#5
Y by
t0rajir0u wrote:
Was $ x_{100} + \frac{1}{x_1} = 1$ a typo?

No
Z K Y
N Quick Reply
G
H
=
a