Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Unusual Hexagon Geo
oVlad   2
N 5 minutes ago by Double07
Source: Romania Junior TST 2025 Day 1 P4
Let $ABCDEF$ be a convex hexagon, such that the triangles $ABC$ and $DEF$ are equilateral and the diagonals $AD, BE$ and $CF$ are concurrent. Prove that $AC\parallel DF$ or $BE=AD+CF.$
2 replies
1 viewing
oVlad
Apr 12, 2025
Double07
5 minutes ago
No more topics!
Conic through six Circumcenters
TelvCohl   1
N Sep 23, 2015 by ancamagelqueme
Source: Own
Given a triangle $ \triangle ABC $ with circumcenter $ O $ and a point $ P $. Let $ \triangle DEF $ be the circumcevian triangle of $ P $ WRT $ \triangle ABC $. Let $ A_1, $ $ A_2 $ be the intersection of $ BC $ with $ FD, $ $ DE $, respectively (define $ B_1, $ $ B_2, $ $ C_1, $ $ C_2 $ similarly). Let $ O_1, $ $ O_2, $ $ O_3, $ $ O_4, $ $ O_5, $ $ O_6 $ be the circumcenter of $ \triangle AC_1F, $ $ \triangle BC_2F, $ $ \triangle BA_1D, $ $ \triangle CA_2D, $ $ \triangle CB_1E, $ $ \triangle AB_2E $, respectively. Let $ \mathcal{C}_T $ be the conic with center $ T $ passing through $ A_1, $ $ A_2, $ $ B_1, $ $ B_2, $ $ C_1, $ $ C_2 $. Let $ \mathcal{C}_S $ be the conic with center $ S $ passing through $ O_1, $ $ O_2, $ $ O_3, $ $ O_4, $ $ O_5, $ $ O_6 $. Let $ (T_1, T_2), $ $ (S_1, S_2) $ be the focus of $ \mathcal{C}_T, $ $ \mathcal{C}_S $, respectively. Prove that $ S $ is the midpoint of $ OT $ and $ T_1T_2 $ $ \perp $ $ S_1S_2 $.
1 reply
TelvCohl
Sep 22, 2015
ancamagelqueme
Sep 23, 2015
Conic through six Circumcenters
G H J
G H BBookmark kLocked kLocked NReply
Source: Own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TelvCohl
2312 posts
#1 • 4 Y
Y by mineiraojose, enhanced, Adventure10, Mango247
Given a triangle $ \triangle ABC $ with circumcenter $ O $ and a point $ P $. Let $ \triangle DEF $ be the circumcevian triangle of $ P $ WRT $ \triangle ABC $. Let $ A_1, $ $ A_2 $ be the intersection of $ BC $ with $ FD, $ $ DE $, respectively (define $ B_1, $ $ B_2, $ $ C_1, $ $ C_2 $ similarly). Let $ O_1, $ $ O_2, $ $ O_3, $ $ O_4, $ $ O_5, $ $ O_6 $ be the circumcenter of $ \triangle AC_1F, $ $ \triangle BC_2F, $ $ \triangle BA_1D, $ $ \triangle CA_2D, $ $ \triangle CB_1E, $ $ \triangle AB_2E $, respectively. Let $ \mathcal{C}_T $ be the conic with center $ T $ passing through $ A_1, $ $ A_2, $ $ B_1, $ $ B_2, $ $ C_1, $ $ C_2 $. Let $ \mathcal{C}_S $ be the conic with center $ S $ passing through $ O_1, $ $ O_2, $ $ O_3, $ $ O_4, $ $ O_5, $ $ O_6 $. Let $ (T_1, T_2), $ $ (S_1, S_2) $ be the focus of $ \mathcal{C}_T, $ $ \mathcal{C}_S $, respectively. Prove that $ S $ is the midpoint of $ OT $ and $ T_1T_2 $ $ \perp $ $ S_1S_2 $.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ancamagelqueme
104 posts
#2 • 2 Y
Y by Adventure10, Mango247
Another property:

The circumscribed circles to triangles AFC1 and BFC2 intersect again in F'.
The circumscribed circles to triangles BFC2 and BDA1 intersect again in B'.
The circumscribed circles to triangles BDA1 and CDA2 intersect again in D'.
The circumscribed circles to triangles CDA2 and CEB1 intersect again in C'.
The circumscribed circles to triangles CEB1 and AEB2 intersect again in E'.
The circumscribed circles to triangles AEB2 and AFC1 intersect again in A'.

Then, the six points A ', B', C ', D', E 'and F' are on the same circle.
Attachments:
Z K Y
N Quick Reply
G
H
=
a