Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
The locus of P with supplementary angles condition
WakeUp   3
N an hour ago by Nari_Tom
Source: Baltic Way 2001
Given a rhombus $ABCD$, find the locus of the points $P$ lying inside the rhombus and satisfying $\angle APD+\angle BPC=180^{\circ}$.
3 replies
WakeUp
Nov 17, 2010
Nari_Tom
an hour ago
inequality ( 4 var
SunnyEvan   2
N an hour ago by ektorasmiliotis
Let $ a,b,c,d \in R $ , such that $ a+b+c+d=4 . $ Prove that :
$$ a^4+b^4+c^4+d^4+3 \geq \frac{7}{4}(a^3+b^3+c^3+d^3) $$$$ a^4+b^4+c^4+d^4+ \frac{252}{25} \geq \frac{88}{25}(a^3+b^3+c^3+d^3) $$equality cases : ?
2 replies
SunnyEvan
6 hours ago
ektorasmiliotis
an hour ago
Inspired by JK1603JK
sqing   6
N an hour ago by sqing
Source: Own
Let $ a,b,c\geq 0 $ and $ab+bc+ca=1.$ Prove that$$\frac{abc-2}{abc-1}\ge \frac{4(a^2b+b^2c+c^2a)}{a^3b+b^3c+c^3a+1} $$
6 replies
sqing
Today at 3:31 AM
sqing
an hour ago
Geometry problem
kjhgyuio   1
N 2 hours ago by Mathzeus1024
Source: smo
In trapezium ABCD,AD is parallel to BC and points E and F are midpoints of AB and DC respectively. If
Area of AEFD/Area of EBCF =√3 + 1/3-√3 and the area of triangle ABD is √3 .find the area of trapezium ABCD
1 reply
kjhgyuio
Apr 1, 2025
Mathzeus1024
2 hours ago
D1018 : Can you do that ?
Dattier   1
N 2 hours ago by Dattier
Source: les dattes à Dattier
We can find $A,B,C$, such that $\gcd(A,B)=\gcd(C,A)=\gcd(A,2)=1$ and $$\forall n \in \mathbb N^*, (C^n \times B \mod A) \mod 2=0 $$.

For example :

$C=20$
$A=47650065401584409637777147310342834508082136874940478469495402430677786194142956609253842997905945723173497630499054266092849839$

$B=238877301561986449355077953728734922992395532218802882582141073061059783672634737309722816649187007910722185635031285098751698$

Can you find $A,B,C$ such that $A>3$ is prime, $C,B \in (\mathbb Z/A\mathbb Z)^*$ with $o(C)=(A-1)/2$ and $$\forall n \in \mathbb N^*, (C^n \times B \mod A) \mod 2=0 $$?
1 reply
Dattier
Mar 24, 2025
Dattier
2 hours ago
2025 Caucasus MO Juniors P3
BR1F1SZ   1
N 2 hours ago by FarrukhKhayitboyev
Source: Caucasus MO
Let $K$ be a positive integer. Egor has $100$ cards with the number $2$ written on them, and $100$ cards with the number $3$ written on them. Egor wants to paint each card red or blue so that no subset of cards of the same color has the sum of the numbers equal to $K$. Find the greatest $K$ such that Egor will not be able to paint the cards in such a way.
1 reply
BR1F1SZ
Mar 26, 2025
FarrukhKhayitboyev
2 hours ago
1 area = 2025 points
giangtruong13   0
2 hours ago
In a plane give a set $H$ that has 8097 distinct points with area of a triangle that has 3 points belong to $H$ all $ \leq 1$. Prove that there exists a triangle $G$ that has the area $\leq 1 $ contains at least 2025 points that belong to $H$( each of that 2025 points can be inside the triangle or lie on the edge of triangle $G$)X
0 replies
giangtruong13
2 hours ago
0 replies
Burak0609
Burak0609   0
2 hours ago
So if $2 \nmid n\implies$ $2d_2+d_4+d_5=d_7$ is even it's contradiction. I mean $2 \mid n and d_2=2$.
If $3\mid n \implies d_3=3$ and $(d_6+d_7)^2=n+1,3d_6d_7=n \implies d_6^2-d_6d_7+d_7^2=1$,we can see the only solution is$d_6=d_7=1$ and it is contradiction.
If $4 \mid n d_3=4$ and $(d_6+d_7)^2-4d_6d_7=1 \implies d_7=d_6+1$. So $n=4d_6(d_6+1)$.İt means $8 \mid n$.
If $d_6=8 n=4.8.9=288$ but $3 \nmid n$.İt is contradiction.
If $d_5=8$ we have 2 option. Firstly $d_4=5 \implies 2d_2+d_4+d_5=17=d_7 d_6=16$ but $10 \mid n$ is contradiction. Secondly $d_4=7 \implies d_7=2.2+7+8=19 and d_6=18$ but $3 \nmid n$ is contradiction. I mean $d_4=8 \implies d_7=d_5+12, n=4(d_5+11)(d_5+12) and d_5 \mid n=4(d_5+11)(d_5+12)$. So $d_5 \mid 4.11.12 \implies d_5 \mid 16.11$. If $d_5=16 d_6=27$ but $3 \nmid n$ is contradiction. I mean $d_5=11,d_6=22,d_7=23$. The only solution is $n=2024$.
0 replies
Burak0609
2 hours ago
0 replies
Good Partitions
va2010   25
N 3 hours ago by lelouchvigeo
Source: 2015 ISL C3
For a finite set $A$ of positive integers, a partition of $A$ into two disjoint nonempty subsets $A_1$ and $A_2$ is $\textit{good}$ if the least common multiple of the elements in $A_1$ is equal to the greatest common divisor of the elements in $A_2$. Determine the minimum value of $n$ such that there exists a set of $n$ positive integers with exactly $2015$ good partitions.
25 replies
va2010
Jul 7, 2016
lelouchvigeo
3 hours ago
An inequality on triangles sides
nAalniaOMliO   7
N 4 hours ago by navier3072
Source: Belarusian National Olympiad 2025
Numbers $a,b,c$ are lengths of sides of some triangle. Prove the inequality$$\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c} \geq \frac{a+b}{2c}+\frac{b+c}{2a}+\frac{c+a}{2b}$$
7 replies
nAalniaOMliO
Mar 28, 2025
navier3072
4 hours ago
D is incenter
Layaliya   3
N 4 hours ago by rong2020
Source: From my friend in Indonesia
Given an acute triangle \( ABC \) where \( AB > AC \). Point \( O \) is the circumcenter of triangle \( ABC \), and \( P \) is the projection of point \( A \) onto line \( BC \). The midpoints of \( BC \), \( CA \), and \( AB \) are \( D \), \( E \), and \( F \), respectively. The line \( AO \) intersects \( DE \) and \( DF \) at points \( Q \) and \( R \), respectively. Prove that \( D \) is the incenter of triangle \( PQR \).
3 replies
Layaliya
Yesterday at 11:03 AM
rong2020
4 hours ago
Geometry problem
Mnjr   3
N Sep 11, 2016 by jayme
In the isosceles triangle $ABC$($AC=BC$) point $O$ is the circumcenter, the $I$incenter, and $D$ lies on $BC$ so that lines $OD$ and $BI$ are perpendicular. Prove that $ID$ and $AC$ are parallel.
3 replies
Mnjr
Sep 7, 2016
jayme
Sep 11, 2016
Geometry problem
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mnjr
34 posts
#1 • 2 Y
Y by rezareza14, Adventure10
In the isosceles triangle $ABC$($AC=BC$) point $O$ is the circumcenter, the $I$incenter, and $D$ lies on $BC$ so that lines $OD$ and $BI$ are perpendicular. Prove that $ID$ and $AC$ are parallel.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mnjr
34 posts
#2 • 2 Y
Y by Adventure10, Mango247
any solution?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Virgil Nicula
7054 posts
#4 • 2 Y
Y by Adventure10, Mango247
See proposed problem PP20 from here.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jayme
9775 posts
#5 • 2 Y
Y by Adventure10, Mango247
Dear Mathlinkers,
you can see

http://jl.ayme.pagesperso-orange.fr/Docs/Parallele%20cote%20triangle%20isocele.pdf

Sincerely
Jean-Louis
Z K Y
N Quick Reply
G
H
=
a