Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Solve an equation
lgx57   2
N 4 hours ago by lgx57
Find all positive integers $n$ and $x$ such that:
$$2^{2n+1}-7=x^2$$
2 replies
lgx57
Mar 12, 2025
lgx57
4 hours ago
Indonesia Regional MO 2019 Part A
parmenides51   17
N 4 hours ago by Rohit-2006
Indonesia Regional MO
Year 2019 Part A

Time: 90 minutes Rules


p1. In the bag there are $7$ red balls and $8$ white balls. Audi took two balls at once from inside the bag. The chance of taking two balls of the same color is ...


p2. Given a regular hexagon with a side length of $1$ unit. The area of the hexagon is ...


p3. It is known that $r, s$ and $1$ are the roots of the cubic equation $x^3 - 2x + c = 0$. The value of $(r-s)^2$ is ...


p4. The number of pairs of natural numbers $(m, n)$ so that $GCD(n,m) = 2$ and $LCM(m,n) = 1000$ is ...


p5. A data with four real numbers $2n-4$, $2n-6$, $n^2-8$, $3n^2-6$ has an average of $0$ and a median of $9/2$. The largest number of such data is ...


p6. Suppose $a, b, c, d$ are integers greater than $2019$ which are four consecutive quarters of an arithmetic row with $a <b <c <d$. If $a$ and $d$ are squares of two consecutive natural numbers, then the smallest value of $c-b$ is ...


p7. Given a triangle $ABC$, with $AB = 6$, $AC = 8$ and $BC = 10$. The points $D$ and $E$ lies on the line segment $BC$. with $BD = 2$ and $CE = 4$. The measure of the angle $\angle DAE$ is ...


p8. Sequqnce of real numbers $a_1,a_2,a_3,...$ meet $\frac{na_1+(n-1)a_2+...+2a_{n-1}+a_n}{n^2}=1$ for each natural number $n$. The value of $a_1a_2a_3...a_{2019}$ is ....


p9. The number of ways to select four numbers from $\{1,2,3, ..., 15\}$ provided that the difference of any two numbers at least $3$ is ...


p10. Pairs of natural numbers $(m , n)$ which satisfies $$m^2n+mn^2 +m^2+2mn = 2018m + 2019n + 2019$$are as many as ...


p11. Given a triangle $ABC$ with $\angle ABC =135^o$ and $BC> AB$. Point $D$ lies on the side $BC$ so that $AB=CD$. Suppose $F$ is a point on the side extension $AB$ so that $DF$ is perpendicular to $AB$. The point $E$ lies on the ray $DF$ such that $DE> DF$ and $\angle ACE = 45^o$. The large angle $\angle AEC$ is ...


p12. The set of $S$ consists of $n$ integers with the following properties: For every three different members of $S$ there are two of them whose sum is a member of $S$. The largest value of $n$ is ....


p13. The minimum value of $\frac{a^2+2b^2+\sqrt2}{\sqrt{ab}}$ with $a, b$ positive reals is ....


p14. The polynomial P satisfies the equation $P (x^2) = x^{2019} (x+ 1) P (x)$ with $P (1/2)= -1$ is ....


p15. Look at a chessboard measuring $19 \times 19$ square units. Two plots are said to be neighbors if they both have one side in common. Initially, there are a total of $k$ coins on the chessboard where each coin is only loaded exactly on one square and each square can contain coins or blanks. At each turn. You must select exactly one plot that holds the minimum number of coins in the number of neighbors of the plot and then you must give exactly one coin to each neighbor of the selected plot. The game ends if you are no longer able to select squares with the intended conditions. The smallest number of $k$ so that the game never ends for any initial square selection is ....
17 replies
parmenides51
Nov 11, 2021
Rohit-2006
4 hours ago
How to prove one-one function
Vulch   6
N 4 hours ago by Vulch
Hello everyone,
I am learning functional equations.
To prove the below problem one -one function,I have taken two non-negative real numbers $ (1,2)$ from the domain $\Bbb R_{*},$ and put those numbers into the given function f(x)=1/x.It gives us 1=1/2.But it's not true.So ,it can't be one-one function.But in the answer,it is one-one function.Would anyone enlighten me where is my fault? Thank you!
6 replies
Vulch
Apr 11, 2025
Vulch
4 hours ago
Inequalities
sqing   6
N 4 hours ago by sqing
Let $ a,b,c> 0 $ and $  \frac{a}{a^2+ab+c}+\frac{b}{b^2+bc+a}+\frac{c}{c^2+ca+b} \geq 1$. Prove that
$$  a+b+c\leq 3    $$
6 replies
sqing
Apr 4, 2025
sqing
4 hours ago
hard number theory
eric201291   0
4 hours ago
Prove:There are no integers x, y, that y^2+9998587980=x^3.
0 replies
eric201291
4 hours ago
0 replies
Amc 10 mock
Mathsboy100   3
N 5 hours ago by iwastedmyusername
let \[\lfloor  x   \rfloor\]denote the greatest integer less than or equal to x . What is the sum of the squares of the real numbers x for which \[  x^2 - 20\lfloor x \rfloor + 19 = 0  \]
3 replies
Mathsboy100
Oct 9, 2024
iwastedmyusername
5 hours ago
Inequalities
lgx57   4
N 5 hours ago by pooh123
Let $0 < a,b,c < 1$. Prove that

$$a(1-b)+b(1-c)+c(1-a)<1$$
4 replies
lgx57
Mar 19, 2025
pooh123
5 hours ago
Let x,y,z be non-zero reals
Purple_Planet   3
N 5 hours ago by sqing
Let $x,y,z$ be non-zero real numbers. Define $E=\frac{|x+y|}{|x|+|y|}+\frac{|x+z|}{|x|+|z|}+\frac{|y+z|}{|y|+|z|}$, then the number of all integers which lies in the range of $E$ is equal to.
3 replies
Purple_Planet
Jul 16, 2019
sqing
5 hours ago
Identity Proof
jjsunpu   2
N 6 hours ago by fruitmonster97
Hi this is my identity I name it Excalibur

I proved it already using induction what other ways?
2 replies
jjsunpu
Today at 10:35 AM
fruitmonster97
6 hours ago
Three 3-digit numbers
miiirz30   5
N 6 hours ago by fruitmonster97
Leonard wrote three 3-digit numbers on the board whose sum is $1000$. All of the nine digits are different. Determine which digit does not appear on the board.

Proposed by Giorgi Arabidze, Georgia
5 replies
miiirz30
Mar 31, 2025
fruitmonster97
6 hours ago
Circumcircles intersect on AO
talkon   21
N Mar 26, 2025 by bin_sherlo
Source: InfinityDots MO Problem 3
Let $\triangle ABC$ be an acute triangle with circumcenter $O$ and orthocenter $H$. The line through $O$ parallel to $BC$ intersect $AB$ at $D$ and $AC$ at $E$. $X$ is the midpoint of $AH$. Prove that the circumcircles of $\triangle BDX$ and $\triangle CEX$ intersect again at a point on line $AO$.

Proposed by TacH
21 replies
talkon
Mar 28, 2017
bin_sherlo
Mar 26, 2025
Circumcircles intersect on AO
G H J
G H BBookmark kLocked kLocked NReply
Source: InfinityDots MO Problem 3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
talkon
276 posts
#1 • 12 Y
Y by artsolver, jonyj1005, Ankoganit, aopser123, anantmudgal09, monkey8, don2001, GeoMetrix, ApraTrip, Adventure10, Mango247, Funcshun840
Let $\triangle ABC$ be an acute triangle with circumcenter $O$ and orthocenter $H$. The line through $O$ parallel to $BC$ intersect $AB$ at $D$ and $AC$ at $E$. $X$ is the midpoint of $AH$. Prove that the circumcircles of $\triangle BDX$ and $\triangle CEX$ intersect again at a point on line $AO$.

Proposed by TacH
This post has been edited 1 time. Last edited by talkon, Jan 3, 2019, 6:16 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anantmudgal09
1979 posts
#2 • 5 Y
Y by artsolver, mihajlon, don2001, Adventure10, MS_asdfgzxcvb
diagram

solution

Comment
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rkm0959
1721 posts
#3 • 5 Y
Y by anantmudgal09, don2001, fuzimiao2013, Adventure10, Mango247
Let $AP, BQ, CR$ be the altitude from $A, B, C$, wrt $\triangle ABC$. Let $M$ be the midpoint of $BC$. Let $O, H$ be the circumcenter and orthocenter of $\triangle ABC$. Let $H'=QR \cap AP$. Let $O'$ be the circumcenter of $\triangle BXC$. Let $Y'=XO' \cap AO$. Let $O_1, O_2$ be the circumcenters of $\triangle BXD$ and $\triangle CXE$, and $\omega_1$, $\omega_2$ be the corresponding circumcircle. Let $\omega$ be the circumcircle of $\triangle ABC$.
Let $R$ be the circumradius of $\triangle ABC$.

Lemma. $\angle BXE = \angle CXD = 90$. Also, $H'$ is the orthocenter of $\triangle XBC$.

Proof of Lemma. Let $AO \cap BC = K$ and $QR \cap BC = T$.
Now, harmonic chasing, we have $(T,H',R,Q)=(T,P;B,C)=-1$ by projecting at $A$.
Also, we have $(P,H';H,A)=-1$, so since $X$ is the midpoint of $AH$, we have $PB \cdot PC = PH \cdot PA = PX \cdot PH'$, which forces $H'$ to be the orthocenter of $\triangle XBC$. This proves the second claim.

It now suffices to show that $CH' \parallel XE$, which will show that $\angle BXE=90$.
It will similarly follow that $BH' \parallel XD$, which will show that $\angle CXD = 90$.
Let's show that $\frac{AX}{AH'}=\frac{AE}{AC}$.

We have $\frac{AE}{AC} = \frac{AO}{AK} = 1-\frac{OK}{AK} = 1-\frac{OM}{AP} = 1-\frac{AX}{AP}$.
(Note that $OM = \frac{1}{2}AH = AX$ by a well known lemma)
It now suffices to show that $\frac{AX}{AH'} + \frac{AX}{AP} = 1$.
$(A,H;H',P)=-1$ shows $\frac{1}{AH'}+\frac{1}{AP} = \frac{2}{AH} = \frac{1}{AX}$, which implies the desired.
The Lemma is now proved $\blacksquare$.

I claim that $\triangle AXB \sim \triangle AEY'$ and $\triangle AXC \sim \triangle ADY'$.
I will just show the first one, the second will follow similarly.

Since $Y' \in AO$, we have $\angle XAB = \angle HAB = \angle OAC = \angle Y'AE$. We will show $\frac{AX}{AB} = \frac{AE}{AY'}$.

Notice the similar triangles $\triangle AXY' \sim \triangle OO'Y'$. This shows that $\frac{AY'}{AO} = \frac{AX}{AX-OO'} = \frac{AH}{AH-2OO'} = \frac{AH}{AH-2OM+2O'M} = \frac{AH}{AH-AH+XH'} = \frac{AH}{XH'}$.
Therefore, $AY' = \frac{R \cdot AH}{XH'}$.

Now note that $X$ is the center of $(ARHQ)$ so $RX = AX$. Therefore, from sine law in $\triangle XH'R$, we have $XH' = \frac{RX}{ \sin \angle AH'R} \cdot \sin \angle XRQ = \frac{AH \cdot \sin (90-A)}{2 \sin (90+C-B)}$. Also, we have, from sine law in $\triangle AOE$, $AE= \frac{R}{\sin \angle AEO} \cdot \angle AOE = \frac{R \sin (90+C-B)}{\sin C}$. Now $AX \cdot AY' = AX \cdot \frac{R \cdot AH \cdot 2 \cdot \sin (90+C-B)}{AH \cdot \sin (90-A)} = AX \cdot \frac{2R \cdot \sin (90+C-B)}{\sin (90-A)} = AX \cdot \frac{2 \cdot AE \cdot \sin C}{\sin (90-A)} = \frac{AH \cdot AE \cdot \sin C}{\cos A} = 2R \cdot AE \cdot \sin C = AB \cdot AE$.

This implies $\frac{AX}{AB} = \frac{AE}{AY'}$. Therefore, we have $\triangle AXB \sim \triangle AEY'$ as desired.
Similarly, we have $\triangle AXC \sim \triangle ADY'$. This also shows $\triangle AXD \sim \triangle ACY'$ and $\triangle AXE \sim \triangle ABY'$.

Now let's angle chase. I claim that $Y'$ lies on both circles. This will show that $Y' \equiv Y$, which will finish the problem.

I will show $\angle DBY' + \angle DXY' = 180$. Note that from $\angle BXE = \angle CXD = 90$, we have $\angle BXD = \angle CXE$. We have $\angle ABY' + \angle DXO' = \angle AXE + \angle DXO'$. Since $O'$ and $H'$ are isogonal wrt $\angle BXC$, we have $\angle AXE + \angle DXO' = \angle AXE + \angle BXD + \angle BXO' = \angle AXE + \angle CXE + \angle H'AC  = 180$. Therefore, we have $D, B, X, Y'$ cyclic, which implies $Y' \in \omega_1$.

Similarly, we have $Y' \in \omega_2$, so $Y' \equiv Y$. Since $Y' \in AO$, so is $Y$. We are done. $\blacksquare$.
This post has been edited 1 time. Last edited by rkm0959, Mar 28, 2017, 2:07 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
aryanna30
158 posts
#4 • 4 Y
Y by GGPiku, TacH, Adventure10, Mango247
My solution : Let $B',H',B_1,F$ be the antipode of $B$ in the circle $\odot O$,the intersection of $AH, \odot O $, the foot of $B$ in $AC$, the intersection of $(BDX),(CEX)$ . $\angle B'AE=\angle B'BC=\angle B'OE$ so $A,O,E,B'$are concyclic.$\angle OB'E=\angle EAO=\angle BAH'$ so $B,H',B_1,E$ are concyclic. by simple angle chasing : $X,B,H',B_1,E$ are concyclic. thus $\angle BXE=\angle CXD=90$ so $\angle EFC=\angle CXE=\angle XBD=\angle DFB=\alpha$ , $\angle BFC=\angle XFC+\angle XFB=\angle XEA+\angle XDA=180-\angle A-(180-(90+\alpha))=\alpha+90-\angle A$ so $\angle BFE=90-\angle A$ $\rightarrow$ $B,F,O,E$ are concyclic . similarly $C,O,D,F$ are concyclic.$AB$ cuts $(BOE),(COD)$ at $E',D'$ res. $\angle EE'B=\angle EFD=\angle DFC=\angle CD'B$ $\rightarrow$ $E'E \parallel CD'$ so $\tfrac {AE'}{AD'}=\tfrac {AE}{AC}=\tfrac {AD}{AB}$ thus $AD.AD'=AE.AE'$ so $A$ lies on radical axis of $(BOE),(COD)$ or line $OF$. done . $\blacksquare$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
artsolver
139 posts
#5 • 1 Y
Y by Adventure10
Is it secret who is the author of this amazing problem?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SmartClown
82 posts
#6 • 2 Y
Y by Adventure10, Mango247
Let $C_1,B_1$ be the midpoints of $AB,AC$ respectively. Note that $X$ is the orthocenter of $AB_1C_1$ and that $X_1$, the reflection of $X$ over $B_1C_1$ lies on $DE$. Let $C_1X$ cut $AO$ at $R_1$. By sine theorems in $\triangle AR_1C_1, \triangle DX_1R_1$ we get $\frac{C_1R_1}{C_1A}=\frac{cos \angle ACB}{sin \angle ABC}=\frac{C_1D}{C_1X_1}$ so $BDXR_1$ is cyclic. Because of same reason $CER_2X$ is cyclic, where $XB_1 \cap AO = R_2$. By sine theorems in $\triangle AR_1C_1$ and $AR_2B_1$ we get $\frac{AR_1}{AR_2}=\frac{AB^2}{AC^2}=\frac{AC_1 \cdot AB}{AB_1 \cdot AC}$, so our two circles must intersect on $AO$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TelvCohl
2312 posts
#7 • 12 Y
Y by rkm0959, talkon, anantmudgal09, kapilpavase, Saro00, don2001, enhanced, AmirKhusrau, fuzimiao2013, Adventure10, Mango247, ehuseyinyigit
Let $ S $ be the projection of $ D $ on $ BC. $ Obviously $ ADSX $ and $ DXHS $ are parallelogram, so $ H $ is the orthocenter of $ \triangle CXS $ $ \Longrightarrow $ $ CX $ is perpendicular to $ DX $ $ ( \bigstar ). $ Let the perpendicular from $ B, $ $ C $ to $ AB, $ $ AC $ cut $ AC, $ $ AB $ at $ Y, $ $ Z, $ respectively and let $ W $ be the second intersection of $ AO $ with $ \odot (AYZ). $ Notice $ (B,E,O,W,Y) $ and $ (C,D,O,W,Z) $ are concyclic, so $$ \measuredangle BWD = \underbrace{ \measuredangle (\perp AB, OY) + \measuredangle (OZ,AB) = \measuredangle (BX,\perp CA) + \measuredangle (CA, CX) }_{\because \ \triangle ABC \cup X \text{ and } \triangle AYZ \cup O \ \text{are inversely similar}} \stackrel{ (\bigstar )}{=} \measuredangle BXD $$$ \Longrightarrow $ $ W $ $ \in $ $ \odot (BDX). $ Similarly, $ W $ lies on $ \odot (CEX), $ so the second intersection of $ \odot (BDX), $ $ \odot (CEX) $ lies on $ AO. $
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
baopbc
225 posts
#8 • 3 Y
Y by don2001, Adventure10, Mango247
Let the line passes through $X$ and perpendicular to $AB$ intersects $AO$ at $K$ and $AC$ at $M$. $F$ is the reflection of $E$ through $M$, since $M$ is the midpoint of $AC$ so $ME\cdot MC$ $=$ $MF\cdot MA$. Note that $\angle AKX$ $=$ $\angle ACB$ $=$ $\angle AEO$ $=$ $\angle OFM$ so $KFMO$ is a cyclic quadrilateral. Thus $\angle FKM$ $=$ $\angle FOM$ $=$ $\angle EOM$ $=$ $\angle XAF$ which imply $AFKX$ is a cyclic quadrilateral i.e $MF\cdot MA$ $=$ $MK\cdot MX$. Hence the circle $(CEX)$ passes through $K$. Define $L$ similarly and we get $(BDX)$ passes through $L$. The tangent at $A$ of $(O)$ meets $BC$ at $S$, then we get $\triangle ABC$ $\cup$ $S$ $\sim$ $\triangle XLK$ $\cup$ $A$ which imply $\tfrac{AK}{AL}$ $=$ $\tfrac{SC}{SB}$ $=$ $\tfrac{AC^2}{AB^2}$ $=$ $\tfrac{AE\cdot AC}{AD\cdot AB}$. Hence $(CEX)$ and $(BDX)$ intersects on $AO$. $\square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
andria
824 posts
#10 • 3 Y
Y by mijail, Adventure10, Mango247
From Two parallel lines $\angle BXE=\angle CXD=90^{\circ}$ hence if $Y=\odot(CEX)\cap \odot(BDX)$ then:
$$90^{\circ}=\angle BXE=\angle A+\angle ABX+\angle AEX=\angle A+\angle DYX+\angle CYX=\angle A+\angle DYC$$$$\Longrightarrow \angle DYC=90^{\circ}-\angle A\ \clubsuit$$On the other hand $\angle EOC=\angle OCB=90^{\circ}-\angle A$ ; So combining this with $\clubsuit\Longrightarrow YCOD$ is cyclic. Let $AB\cap \odot(YCOD)=C'$ then $\angle AC'C=\angle DYC=90^{\circ}-\angle A\Longrightarrow \angle C'CA=90^{\circ}$ thus we conclude that $C'DOY$ is cyclic ; similarly $B'EOY$ is cyclic so because $DEB'C'$ is cyclic $\Longrightarrow AD.AC'=AE.AB'\Longrightarrow A,O,Y$ are collinear.
Q.E.D

[asy]
import graph; size(11.363882971513085cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ real xmin = -9.989189285669891, xmax = 28.374693685843194, ymin = -4.498210783562595, ymax = 13.508095734235024;  /* image dimensions */
pen uuuuuu = rgb(0.26666666666666666,0.26666666666666666,0.26666666666666666); pen evefev = rgb(0.8980392156862745,0.9372549019607843,0.8980392156862745); pen qqwuqq = rgb(0.,0.39215686274509803,0.); 

filldraw(arc((3.8818502271691893,2.1361015875017513),0.6028897271584036,3.5305225804302633,52.658962959976755)--(3.8818502271691893,2.1361015875017513)--cycle, evefev, qqwuqq); 
filldraw(arc((11.335929525368321,2.5959985267491685),0.6028897271584036,134.40208220088383,183.53052258043027)--(11.335929525368321,2.5959985267491685)--cycle, evefev, qqwuqq); 
filldraw(arc((10.159894859232196,-1.7419003822357084),0.6028897271584036,74.83132569953467,123.95976607908116)--(10.159894859232196,-1.7419003822357084)--cycle, evefev, qqwuqq); 
filldraw(arc((7.34316369040184,6.672980353946524),0.6028897271584036,-45.59791779911621,3.5305225804303073)--(7.34316369040184,6.672980353946524)--cycle, evefev, qqwuqq); 
 /* draw figures */
draw(circle((7.34316369040184,6.672980353946524), 5.706484016640463)); 
draw((5.53180383480297,12.084351280587748)--(5.797530020669884,7.777420983766684)); 
draw((5.797530020669884,7.777420983766684)--(6.063256206536798,3.47049068694562)); 
draw((5.797530020669884,7.777420983766684)--(10.159894859232196,-1.7419003822357084)); 
draw((10.159894859232196,-1.7419003822357084)--(3.8818502271691893,2.1361015875017513)); 
draw((10.159894859232196,-1.7419003822357084)--(11.335929525368321,2.5959985267491685)); 
draw((5.797530020669884,7.777420983766684)--(4.606302605058149,6.5041232777145845)); 
draw((5.797530020669884,7.777420983766684)--(8.787486563916426,6.7620912477593755)); 
draw((11.335929525368321,2.5959985267491685)--(7.34316369040184,6.672980353946524)); 
draw((5.797530020669884,7.777420983766684)--(3.8818502271691893,2.1361015875017513)); 
draw(circle((8.336238619796323,2.3265288496558147), 4.45845696340593), red); 
draw(circle((6.280151167171303,1.63829026431878), 5.145687507334737), red); 
draw((7.34316369040184,6.672980353946524)--(3.8818502271691893,2.1361015875017513)); 
draw((3.8818502271691893,2.1361015875017513)--(7.608889876268755,2.36605005712546)); 
draw((7.608889876268755,2.36605005712546)--(11.335929525368321,2.5959985267491685)); 
draw((5.53180383480297,12.084351280587748)--(4.606302605058149,6.5041232777145845)); 
draw((4.606302605058149,6.5041232777145845)--(3.8818502271691893,2.1361015875017513)); 
draw((3.8818502271691893,2.1361015875017513)--(3.1251008188296665,-2.426652198074765)); 
draw((3.1251008188296665,-2.426652198074765)--(12.49065475614913,0.7082998607440981)); 
draw((12.49065475614913,0.7082998607440981)--(11.335929525368321,2.5959985267491685)); 
draw((11.335929525368321,2.5959985267491685)--(8.787486563916426,6.7620912477593755)); 
draw((8.787486563916426,6.7620912477593755)--(5.53180383480297,12.084351280587748)); 
draw((10.159894859232196,-1.7419003822357084)--(4.606302605058149,6.5041232777145845)); 
draw((8.787486563916426,6.7620912477593755)--(7.34316369040184,6.672980353946524)); 
draw((7.34316369040184,6.672980353946524)--(4.606302605058149,6.5041232777145845)); 
draw((5.53180383480297,12.084351280587748)--(10.159894859232196,-1.7419003822357084), linetype("4 4") + blue); 
 /* dots and labels */
dot((5.53180383480297,12.084351280587748)); 
label("$A$", (5.344306108392175,12.463086873827125), NE * labelscalefactor); 
dot((3.8818502271691893,2.1361015875017513)); 
label("$B$", (3.1739030906219217,1.852227675839244), NE * labelscalefactor); 
dot((11.335929525368321,2.5959985267491685)); 
label("$C$", (11.634455595078187,2.495310051474873), NE * labelscalefactor); 
dot((7.34316369040184,6.672980353946524),linewidth(3.pt) + uuuuuu); 
label("$O$", (6.83143410204957,6.936597708208438), NE * labelscalefactor,uuuuuu); 
dot((6.063256206536798,3.47049068694562),linewidth(3.pt) + uuuuuu); 
label("$H$", (6.148159077936713,3.600607884598611), NE * labelscalefactor,uuuuuu); 
dot((4.606302605058149,6.5041232777145845),linewidth(3.pt) + uuuuuu); 
label("$D$", (4.118430329836754,6.7356344658223035), NE * labelscalefactor,uuuuuu); 
dot((8.787486563916426,6.7620912477593755),linewidth(3.pt) + uuuuuu); 
label("$E$", (9.001837119819823,7.157657274833185), NE * labelscalefactor,uuuuuu); 
dot((5.797530020669884,7.777420983766684),linewidth(3.pt) + uuuuuu); 
label("$X$", (5.886906862834738,7.901221271661881), NE * labelscalefactor,uuuuuu); 
dot((10.159894859232196,-1.7419003822357084),linewidth(3.pt) + uuuuuu); 
label("$Y$", (10.167423925659405,-2.3077114415537325), NE * labelscalefactor,uuuuuu); 
dot((12.49065475614913,0.7082998607440981),linewidth(3.pt) + uuuuuu); 
label("$B'$", (12.94071667058806,0.445484979136305), NE * labelscalefactor,uuuuuu); 
dot((3.1251008188296665,-2.426652198074765),linewidth(3.pt) + uuuuuu); 
label("$C'$", (2.4504354180318373,-2.8503121959962945), NE * labelscalefactor,uuuuuu); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
[/asy]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
juckter
323 posts
#11 • 3 Y
Y by don2001, Adventure10, Mango247
Fairly long solution, but it exhibits some interesting properties of the configuration that haven't been discussed in other solutions.

First, prove that $\angle CXD = \angle BXE = 90^{\circ}$ as has been done numerous times in this thread.

Let $\Omega$ be the circumcircle of $ABC$ and let $AH$ cut $\Omega$ at $A, F$. Let $M$ be the midpoint of $BC$ and let the line through $F$ parallel to $HM$ cut $AO$ at $P$. We shall prove that $BDXP$ and $CEXP$ are cyclic which is of course sufficient.

Notice that $DE$ is the perpendicular bisector of $AF$ and thus $\angle DFO = \angle DAO = \angle DBO$. Thus $B, D, O, F$ are concyclic. Analogously $C, E, O, F$ are concyclic. Using this fact we find that

$$\angle BFE = \angle BFO + \angle EFO = \angle ECO + \angle ABE = \angle CAO + \angle ABC = \angle BAH + \angle ABC = 90^{\circ}$$
Thus $F, B, X, E$ are concyclic and analogously $F, C, X, D$ are concyclic.

Now, let $Q = BE \cap CD, Y = (BDO) \cap BE, Z = (CEO) \cap CD$, then $\angle QYD = \angle BOD = \angle COE = \angle QZE$ which implies $D, E, Y, Z$ are concylic. Thus

$$\frac{QY}{QZ} = \frac{QD}{QE} = \frac{QC}{QB} \implies QY \cdot QB = QZ \cdot QC$$
Which implies $Q$ lies on radical axis $OF$ of $(BDO), (CEO) \implies O, Q, F$, are collinear.

Now, by Ceva, $A, Q, M$ are collinear, and since $OM$ is parallel to $AF$ we get $\frac{OQ}{OF} = \frac{QM}{QA} = \frac{OM}{AF} = \frac{AX}{AF} = \frac{OX}{FP}$ using the well known fact that $AH = 2OM$ ($XOMH$ is a parallelogram). It follows that $X, Q, P$ are collinear.

Now let $\mathcal{I}$ be the composition of the inversion with center $A$ and radius $\sqrt{AD \cdot AC}$ with the reflection about the angle bisector of $\angle BAC$, and let $\mathcal{I}(W) = W'$ for any point $W$. Then it's clear that $D = C', E = B'$, so $Q'$ is the intersection of the circumcircles of $ABE, ACD$. Now notice that rays $AH$ and $AO$ are swapped by $\mathcal{I}$ since $O, H$ are isogonal conjugates. Moreover, as triangles $ADF$ and $AOC$ are isosceles with $\angle FAD = \angle CAO$ we have:

$$\frac{AD}{AF} = \frac{AO}{AC} \implies AD \cdot AC = AO \cdot AF = AX \cdot AP$$
Where the last equality follows from $OX$ being parallel to $PF$. Thus $X = P'$. Now notice that

$$\angle BQC = \angle BXC + \angle XBQ + \angle XCQ = (\angle CXE + \angle CXD - \angle BXE) + \angle XFE + \angle XFD = 180^{\circ} - \angle DXE + \angle BAC$$
On the other hand, as $Q' = (ABE) \cap (ACD)$, it must also lie on $(DQB)$ and $EQC$. It follows that

$$\angle DQ'E = \angle DQ'Q + \angle EQ'Q = \angle DBQ + \angle ECQ = \angle BQC - \angle BAC = 180^{\circ} - \angle DXE$$
From which it follows that $X, D, Q', E$ are concyclic and hence $Q, B, P, C$ are concyclic.

Now, let $\angle ABC = \beta, \angle PBC = \alpha$, then $\angle DBP = \alpha + \beta$ and it suffices to prove that $\angle DXP = 180^{\circ} - \alpha - \beta$. But $\angle XDQ = \angle XFC = \angle ABC = \beta$ and $\angle DQX = \angle PQC = \angle PBC = \alpha$, so we are finally done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
EulerMacaroni
851 posts
#12 • 3 Y
Y by anantmudgal09, don2001, Adventure10
WLOG $AB<AC$, and define $\{A,H'\}\equiv AH\cap \odot(ABC)$, $P\equiv AH\cap DE$, $Q\equiv CH\cap AB$, $V\equiv BE\cap CD$, $U \equiv AO\cap XV$. Note that by reflection about $O$, $H'D$ passes through the antipode of $C$ with respect to $\odot(ABC)$, so $\angle CH'D=\angle CQD=\tfrac{\pi}{2}$. Then $AX\cdot AH'=AH\cdot AP=AQ\cdot AD$, so pentagon $CXQDH'$ is cyclic. Then $\angle AQX=\angle AH'D=\tfrac{\pi}{2}-\angle AH'C=\angle BCH$, so $\{CH,CD\}$ are isogonal with respect to $\angle XCB$ and consequently $\angle BCV=\angle XCQ=\angle XDQ$.

I now claim that $U\in\odot(BVC)$; note that $\{H,V\}$ are isogonal conjugates in $\triangle XBC$. Let $V'$ be the point on $\odot(BVC)$ with $VV'\parallel BC$; notice that $\overline{AOV'}$ are collinear from negative homothety through $V$. Then
\begin{align*}
\angle AUX&=\pi-\angle AXV-\angle XAO\\
&=\angle HXV-\angle XAO\\
&=\angle BXC-2\angle BXH-\angle B+\angle C\\
\end{align*}and $$\angle VCV'=\pi-\angle VV'C-\angle CVV'=\angle VBC-\angle VCB=\angle XBH-\angle XCH$$so we want to show that $$\angle BXC-2\angle BXH-\angle B+\angle C=\angle XBH-\angle XCH$$$$\Longrightarrow \angle BXC-\angle BXH=\angle B-\angle XCH$$$$\Longrightarrow \angle CXH+\angle XCH=\angle B$$which is true, as desired. Then $\angle BUX=\angle BUV=\angle BCV=\angle XDQ=\pi-\angle BDX$, and we're done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
atmchallenge
980 posts
#13 • 1 Y
Y by Adventure10
Is there a good complex solution to this? I tried it on the contest but got too messy to do by hand.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pieater314159
202 posts
#14 • 3 Y
Y by Adventure10, Mango247, Lcz
Let $P$ be the second intersection of $(BDX)$ and $(CEX)$, and perform an inversion about $A$ with radius $\sqrt{AB\cdot AE}=\sqrt{AC\cdot AD}$ and reflect across the angle bisector of $\angle BAC$. We see that $B\to E$ and $D\to C$, while lines $AX$ and $AO$ swap. We look at this and say it would be really nice if $X$ and $P$ are inverses of each other. In fact, this is true. We show this using complex numbers.

Let $(ABC)$ be the unit circle so $A=a,B=b,C=c$. Then

$$d+ab\bar{d}=a+b,d+bc\bar{d}=0 \implies d=\frac{c(a+b)}{c-a},$$
while

$$x=a+\frac{b+c}{2}.$$
Let $Q$ be the inverse of $X$ under this inversion: we have

$$(q-a)(x-a)=(c-a)(d-a) \implies (q-a)\left(\frac{b+c}{2}\right)=(c-a)\frac{ac+bc-ac+a^2}{c-a}=a^2+bc$$
$$q-a=\frac{2(a^2+bc)}{b+c}.$$
We want to show that $Q,B,X,D$ are concyclic; this is equivalent to $q-a,b-a,x-a,d-a$ being concyclic. These are

$$\frac{2(a^2+bc)}{b+c},b-a,\frac{b+c}{2},\frac{a^2+bc}{c-a}.$$
The cross ratio is

\begin{align*}
\frac{\frac{
\frac{2(a^2+bc)}{b+c}-\frac{b+c}{2}
}{
\frac{2(a^2+bc)}{b+c}-\frac{a^2+bc}{c-a}
}}{\frac{
(b-a)-\frac{b+c}{2}
}{
(b-a)-\frac{a^2+bc}{c-a}
}}
&=
\frac{\frac{
\frac{4(a^2+bc)-(b+c)^2}{2(b+c)}
}{
\frac{(a^2+bc)(2(c-a)-(b+c)}{(b+c)(c-a)}
}}{\frac{
\frac{2(b-a)-(b+c)}{2}
}{
\frac{(b-a)(c-a)-(a^2+bc)}{c-a}
}}\\
&=
\frac{\frac{
\frac{4a^2-(b-c)^2}{2(b+c)}
}{
-\frac{(a^2+bc)(2a+(b-c)}{(b+c)(c-a)}
}}{\frac{
-\frac{2a-(b-c)}{2}
}{
-\frac{a(b+c)}{c-a}
}}\\
&=
\frac{\frac{
\frac{(2a+(b-c))(2a-(b-c))}{2(b+c)}
}{
-\frac{(a^2+bc)(2a+(b-c))}{(b+c)(c-a)}
}}{\frac{
-\frac{2a-(b-c)}{2}
}{
-\frac{a(b+c)}{c-a}
}}\\
&=
-\frac{(2a+(b-c))(2a-(b-c))(b+c)(c-a)(2)(a)(b+c)}{(2)(b+c)(a^2+bc)(2a+(b-c))(2a-(b-c))(c-a)}\\
&=
-\frac{a(b+c)}{(a^2+bc)},
\end{align*}
the conjugate of which is

$$-\frac{\frac{1}{a}\frac{b+c}{bc}}{\frac{a^2+bc}{a^2bc}}=-\frac{a(b+c)}{a^2+bc},$$
so it is real, and the inverse of $X$ lies on $(BDX)$ and hence $(CEX)$. This point is obviously on $AO$, finishing the proof.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rmtf1111
698 posts
#15 • 2 Y
Y by Adventure10, Mango247
After establishing that $\angle{BXE}=\angle{DXC}=90^{\circ}$ it is easy to finish with inversion. Let $Y=(CEX) \cap (BDX).$ Let $Z'$ be the image of $Z$ under an inversion with pole $A,$ power $\sqrt{AC\cdot AD},$ followed by a reflection over the bisector of angle ${A}.$ Clearly $Y'$ lies inside triangle ${ADE}.$
$$360^{\circ}-\angle{BY'E}=\angle{AY'B}+\angle{AY'E}=\angle{AEY}+\angle{ABY}=360^{\circ}-\angle{BAC}-\angle{BYE} \implies \angle{BY'E}=\angle{BAC}+\angle{BYE}$$$$\angle{BYE}=\angle{BYX}+\angle{EYX}=\angle{ADX}+\angle{ACD}=90^{\circ}=\angle{BAC} \implies \angle{BY'E}=90^{\circ}$$Analogously, $\angle{CY'D}=90^{\circ},$ which means that $Y'$ is the intersection of circles $(DXC)$ and $(BXE)$ which lies inside $\triangle{ADE},$ but this is exactly $X,$ hence the conclusion.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GeoMetrix
924 posts
#16 • 3 Y
Y by sameer_chahar12, mueller.25, amar_04
This was a really nice prblem. One of the nicest configurations ive seen in a while. Here goes my solution.

Proof: Define $F$ as the required point of intersection. We begin with a few claims.

Claim 1: If $I=\overline{DH'} \cap \overline{BC}$ then $\angle IHC=90^\circ$.

Proof: For this notice that as $H'$ is the reflection of $H$ over $\overline{BC}$ $\implies$ $\angle CHI=\angle CH'D$. But now notice that trivially we have that $DA=DH'$ hence $$\angle CH'D=\angle DH'A+\angle AH'C=\angle B+90^\circ-\angle B=90^\circ$$. $\square$.

Now we bring the point $X$ in the picture.
Claim 2: $\angle CXD=90^\circ$.

Proof: For this notice that by claim1 it just suffices to show that $(DXCH')$ is cyclic. Now we use phantom points. Define $D=\odot(CXH') \cap \overline{AB}$ . Then we need to show that $\overline{OD}\parallel \overline{BC}$. Now i present a proof told to me by amar_04.

Now observe that it suffices to show that $\overline{AD}=\overline{DH'}$. Alter the labelling a bit. Let $\overline{CE}\perp \overline{AB}$ and $\overline{AQ}\perp \overline{BC}$ where $E\in \overline{AB}$ and $Q\in \overline{BC}$. Note That $\overline{HX}\cdot \overline{HH'}=\overline{HA}\cdot \overline{HQ}=\overline{HE}\cdot \overline{HC}$. So, $E\in\odot(CH'X)$. So now draw a line $\ell$ to $BC$ though $H'$ meeting $\overline{AB}$ at $T$. So, $\angle HTE=\angle EH'X=\angle XDA\implies \overline{AD}=\overline{DX}=\overline{DH'}$ $\square$.

Now back to the main problem. Observe by claim 2 we have that $(CXDH')$ is cyclic. But also $(CHIH')$ is cyclic by claim 1. Hence we have that there exists a spiral similirity at $C$ such that $\overline{HI} \mapsto \overline{XD}$ $\implies$ $\triangle {XCD} \sim \triangle {HCI}$ $\implies$ $$\angle XCD=\angle HCI=\angle ACO$$and as we also know that $\angle DAX=\angle OAC$ so we can directly conclude that $(X,O)$ are isogonal conjugates w.r.t $\triangle {ADC}$ . So we may have that $$\angle EFB=\angle XFB+\angle XFE=\angle ADX+\angle XCE=\angle EDC+\angle OCD=\angle DCB+\angle OCD=\angle OCB=\angle OBC=\angle DOB$$. Hence we have that $(OEFB)$ is cyclic. Similiarly conclude that $(ODCF)$ is cyclic. Now we state a lemma which finishes the problem.

Lemma: If $\odot(OEB)\cap \odot(OCD)=F$ then $O \in \overline{AF}$.

Proof: Observe that $$\angle EFB=\angle DOB=\angle EOC=\angle DFC$$. So we have that $(\overline{FD},\overline{FE})$ are isogonal w.r.t $\angle BFC$. Now applying the isogonal line lemma to $(\overline{FD},\overline{FE})$ w.r.t $\angle BFC$ we have that if $G=\overline{CD}\cap \overline{BE}$ then $(\overline{FG},\overline{FA})$ are isogonal. But notice that $$\angle BFC=\angle OFB+\angle OFC=\angle EBC+\angle DCB=180^\circ -\angle BGC$$. So we have that $(BGCF)$ is cyclic. Now just notice that $$\angle GFC=\angle GBC=\angle EBC=\angle OEB=\angle OFB$$with which we have that $(\overline{FG},\overline{FO})$ are isogonal w.r.t $\angle BFC$ . Now earlier we already had $(\overline{FG},\overline{FA})$ are isogonal with which we are done. $\blacksquare$.
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(12cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -28.744810636388543, xmax = 38.626461199971594, ymin = -25.087300536119866, ymax = 19.403987423346614;  /* image dimensions */
pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); 
 /* draw figures */
draw((-4.7801760376472116,13.950725144137508)--(-7.56,-2.28), linewidth(0.8)); 
draw((-7.56,-2.28)--(8,-2.26), linewidth(0.8)); 
draw((8,-2.26)--(-4.7801760376472116,13.950725144137508), linewidth(0.8)); 
draw(circle((0.21098652855647296,4.742480783064175), 10.473942332069228), linewidth(0.8)); 
draw((-4.7801760376472116,13.950725144137508)--(-4.762149094760157,-0.0742364219908404), linewidth(0.4) + wrwrwr); 
draw(circle((3.266103826671193,-0.5242884546801765), 10.96754517183467), linewidth(0.8)); 
draw(circle((-4.974307769629735,-6.808894958451459), 13.748640203456471), linewidth(0.8)); 
draw((-4.7801760376472116,13.950725144137508)--(8.336947610659198,-10.249183848185663), linewidth(1.2) + linetype("4 4")); 
draw(circle((1.3557146108993223,-4.335137577706486), 9.149511325000091), linewidth(0.4) + linetype("4 4")); 
draw((-4.771162566203684,6.938244361073334)--(8.336947610659198,-10.249183848185663), linewidth(0.4)); 
draw((8.336947610659198,-10.249183848185663)--(-7.56,-2.28), linewidth(0.4)); 
draw((2.477103169504549,4.745393529389301)--(8.336947610659198,-10.249183848185663), linewidth(0.4)); 
draw((-4.771162566203684,6.938244361073334)--(-6.3587113083741285,4.734036441371462), linewidth(0.4) + wrwrwr); 
draw((-4.771162566203684,6.938244361073334)--(8,-2.26), linewidth(0.4)); 
draw((0.21098652855647299,4.742480783064174)--(8,-2.26), linewidth(0.4)); 
draw((-4.771162566203684,6.938244361073334)--(2.477103169504549,4.745393529389301), linewidth(0.4)); 
draw(circle((-3.068492691278137,0.5606330775406088), 5.314398760492078), linewidth(0.4)); 
draw((-4.762149094760157,-0.0742364219908404)--(-4.7564880054789525,-4.478563882765253), linewidth(0.4) + wrwrwr); 
draw((-6.3587113083741285,4.734036441371462)--(-4.7564880054789525,-4.478563882765253), linewidth(0.4)); 
draw((-7.56,-2.28)--(-4.7564880054789525,-4.478563882765253), linewidth(0.4) + wrwrwr); 
draw((-5.1393956738612,-2.276888683385425)--(-4.762149094760157,-0.0742364219908404), linewidth(0.4) + wrwrwr); 
draw((-4.762149094760157,-0.0742364219908404)--(-7.56,-2.28), linewidth(0.4)); 
draw((8,-2.26)--(-4.7564880054789525,-4.478563882765253), linewidth(0.4) + wrwrwr); 
draw((-4.762149094760157,-0.0742364219908404)--(8,-2.26), linewidth(0.4)); 
draw((-6.3587113083741285,4.734036441371462)--(8,-2.26), linewidth(0.4)); 
draw(circle((-3.059124112539502,-6.728121181117919), 11.927628977533937), linewidth(0.4) + linetype("4 4")); 
draw((-6.3587113083741285,4.734036441371462)--(8.336947610659198,-10.249183848185663), linewidth(0.4)); 
draw((8.336947610659198,-10.249183848185663)--(8,-2.26), linewidth(0.4)); 
draw((-7.56,-2.28)--(2.477103169504549,4.745393529389301), linewidth(0.4)); 
draw(circle((0.2255521701851131,-6.5895884040177295), 8.898728830946485), linewidth(0.4)); 
 /* dots and labels */
dot((-4.7801760376472116,13.950725144137508),dotstyle); 
label("$A$", (-4.596146965173741,14.373015825176855), NE * labelscalefactor); 
dot((-7.56,-2.28),dotstyle); 
label("$B$", (-7.395992028502993,-1.8573360263099332), NE * labelscalefactor); 
dot((8,-2.26),dotstyle); 
label("$C$", (8.178146136265973,-1.8135884471954136), NE * labelscalefactor); 
dot((0.21098652855647299,4.742480783064174),linewidth(4pt) + dotstyle); 
label("$O$", (0.3910770538814897,5.09852905289869), NE * labelscalefactor); 
dot((-4.762149094760157,-0.0742364219908404),linewidth(4pt) + dotstyle); 
label("$H$", (-4.596146965173741,0.28629535030152936), NE * labelscalefactor); 
dot((-4.771162566203684,6.938244361073334),linewidth(4pt) + dotstyle); 
label("$X$", (-4.596146965173741,7.285908008624673), NE * labelscalefactor); 
dot((-6.3587113083741285,4.734036441371462),linewidth(4pt) + dotstyle); 
label("$D$", (-6.171059813296446,5.09852905289869), NE * labelscalefactor); 
dot((2.477103169504549,4.745393529389301),linewidth(4pt) + dotstyle); 
label("$E$", (2.665951167836507,5.09852905289869), NE * labelscalefactor); 
dot((8.336947610659198,-10.249183848185663),linewidth(4pt) + dotstyle); 
label("$F$", (8.52812676918213,-9.906890583381548), NE * labelscalefactor); 
dot((-4.7564880054789525,-4.478563882765253),linewidth(4pt) + dotstyle); 
label("$H'$", (-4.596146965173741,-4.132210140264955), NE * labelscalefactor); 
dot((-5.1393956738612,-2.276888683385425),linewidth(4pt) + dotstyle); 
label("$I$", (-4.946127598089897,-1.9448311845389725), NE * labelscalefactor); 
dot((-1.1581917939609276,2.200896647923807),linewidth(4pt) + dotstyle); 
label("$G$", (-0.965097898668617,2.561169464256551), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Rg230403
222 posts
#17 • 1 Y
Y by p_square
Claim 1.$\angle BXD=\angle CXE$

We present two proofs of this claim but before that let's see how this claim finishes.
Perform $\sqrt{AB\cdot AE}$ inversion with center $A$ and reflect across the angle bisector of $\angle BAC$. Observe that this transformation maps $B$ to $E$ and $C$ to $F$. Let $X$ go to a point $X'$ under the inversion. Now, note that $X'$ lies on $AO$ as $AO$ and $AH$ are isogonal. Also, $\angle CXE=\angle BXD=\angle BXA-\angle DXA=\angle AEX'-\angle ACX'=\angle EX'C$. Thus, $CEXX'$ are cyclic. Similarly, $BDXX'$ are collinear and we get the desired result.
Now, we prove claim 1.
Let $D',E'$ be the feet of perpendiculars from $D,E$ respectively to $BC$ and let $H$ be the orthocenter and $T$ be the foot of perpendicular from $A$ to $BC$.

Remember that $AX=DD'=EE'=XH$ so $EE'AX, DD'AX, EE'XH, DD'XH$ are all parallelograms.

Proof 1(by p_square):
We claim that $H$ is the orthocenter of $E'XC'$.
Proof: We have that $CH\perp AB=AE\parallel XE'\implies E'X\perp CH$ and we have $XH\perp CE'$. Thus, we get that $EX\parallel E'H\perp XC\implies \angle EXC=90$. Similarly, $\angle BXD=90\implies \angle BXD=\angle CXE$.
Proof 2(Mine):Now, let $U$ be a point on $AH$ such that $\frac{TA}{TX}=\frac{TU}{TH}$.
$\angle DXB=\angle DXT-\angle BXT=\angle D'HT-\angle BXT=\angle BUT-\angle BXT=\angle XBU$. Similarly, we have $\angle CXE=\angle XCU$. Thus, we want $\angle XBU\angle XCU$. Let the reflection of $B$ in $T$ be $B'$. Now, $TX\cdot TU=TA\cdot TH=BT\cdot TC=TB'\cdot TC$. Thus, we have that $XUB'C$ is cyclic. So, $\angle BXD=\angle XBU=\angle XB'U=XCU=\angle CXE$ and thus, we are done.
This post has been edited 1 time. Last edited by Rg230403, Feb 10, 2021, 7:12 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TheUltimate123
1740 posts
#18 • 2 Y
Y by tapir1729, math_comb01
Very cool. The key idea is that the problem inverts to itself with the two intersections of \((BDX)\) and \((CEX)\) swapped. First, a claim:

Claim: \(\angle BXE=\angle CXD=90^\circ\).
Proof

[asy] size(6cm); defaultpen(fontsize(10pt)); pair A,B,C,H,O,D,EE,X,Y; A=dir(110); B=dir(220); C=dir(320); H=A+B+C; O=origin; D=extension(A,B,O,O+C-B); EE=extension(A,C,O,O+C-B); X=(A+H)/2; Y=reflect(circumcenter(B,D,X),circumcenter(C,EE,X))*X;

draw(A--H); draw(A--Y,dashed); draw(circumcircle(B,D,X),gray); draw(circumcircle(C,EE,X),gray); draw(unitcircle); draw(D--EE); draw(A--B--C--cycle,linewidth(1));

dot("\(A\)",A,A); dot("\(B\)",B,dir(210)); dot("\(C\)",C,dir(-30)); dot("\(H\)",H,S); dot("\(O\)",O,SW); dot("\(D\)",D,W); dot("\(E\)",EE,NE); dot("\(X\)",X,dir(305)); dot("\(Y\)",Y,dir(300));     [/asy]

From the claim, we deduce \(\measuredangle BXD=\measuredangle EXC\). Denote by \(\Psi\) inversion at \(A\) with radius \(\sqrt{AB\cdot AE}=\sqrt{AC\cdot AD}\) followed by reflection over the bisector of \(\angle BAC\), so \(\Psi\) swaps \((B,E)\) and \((C,D)\).

Let \(Y=\Psi(X)\) lie on \(\overline{AO}\). Then \[\measuredangle BYD=\measuredangle BYA+\measuredangle AYD=\measuredangle XEA+\measuredangle ACX=\measuredangle EXC=\measuredangle BXD\]so \(Y\) lies on \((BDX)\). Similarly \(Y\) lies on \((CEX)\), so \(Y\) is the desired intersection.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Idio-logy
206 posts
#19
Y by
This is routine with complex numbers once you guess the intersection (which is not easy).

Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MathLuis
1490 posts
#20
Y by
Let $AH,BH,CH$ hit $BC,AC,AB$ at $A_1,B_1,C_1$, now let $AH$ hit $(ABC)$ again at $H_A$ now by PoP we have that $XH \cdot HA_1=AH\cdot HA_1=BH \cdot HB_1=CH \cdot HC_1$ so $XBH_AB_1, XCH_AC_1$ are cyclic. Now consider an inversion with reflection that sends $D$ to $C$ and $B$ to $E$, this gives that $O,H_A$ are inverses so $DBH_AO, ECH_AO$ are cyclic and by angle chase.
$$\angle BH_AD=\angle BOD=\angle OBC=90-\angle BAC=\angle OCB=\angle EOC=\angle CH_AE$$Now note that $H_A,A$ are symetric w.r.t $DE$ so $\angle BAC=\angle DH_AE$ so $\angle BH_AE=\angle CH_AD=90$ and that means $CH_AC_1DX, BH_AEB_1X$ are cyclic so $\angle BXE=90=\angle CXD$ so $\angle BXD=\angle CXE$ and since $DE \parallel BC$ we get $(DXE), (BXC)$ tangent and also inverting gives $(DOC) \cap (BOE)=X'$ and $(DX'E), (BX'D)$ are tangent at $X'$ and $A,O,X'$ colinear and $\triangle BDX \sim \triangle ECX'$ so now $\angle DXB=\angle EX'C=\angle DX'B$ hence $DBX'X$ is cyclic but inverting gives $CEXX'$ cyclic so $(BDX),(CEX)$ meet at $X'$ which lies in $AO$ thus we are done :D

Note: I wrote this at the hospital with one hand because yesterday i had finger surgery, it went good so i still alive lol.
This post has been edited 3 times. Last edited by MathLuis, May 24, 2024, 2:52 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
CT17
1481 posts
#21
Y by
Claim: $\angle BXE = \angle CXD = 90^\circ$.

Proof: Let $P$ be the foot from $E$ to $BC$, so that $AXPE$ is a parallelogram. Let $Q$ be the reflection of $C$ over $P$, so that $HQ\parallel AC$. Let $R$ be the reflection of $Q$ over $E$, so that $AHCR$ is a parallelogram. Since $AR\parallel HC\perp AB$ and $CR\perp CB$, $R$ is actually the antipode of $B$ in $(ABC)$. Then we have $\angle QBR = 90^\circ - \angle A = \angle HBA$ and $\angle BQR = 180^\circ - \angle C = \angle BHA$, so $\triangle BQR\sim\triangle BHA$. Hence, we also have $\triangle BQE\sim\triangle BHX$, inducing the second spiral similarity $\triangle BHQ\sim\triangle BXE$, so $\angle BXE = \angle BHQ = 90^\circ$ as desired, and $\angle CXD = 90^\circ$ follows by symmetry.

Note that the claim implies $\angle DXB = \angle CXE$. Now, if $T$ is the point on $AO$ satisfying $\triangle CAX\sim\triangle BAT$, we have $\angle BTD = \angle CXE = \angle BXD$, so $T$ lies on $(BDX)$. Hence by PoP, the other intersection $T'$ of $(BXD)$ with $AO$ satisfies

$$AT' = \frac{AB\cdot AD}{AT} = \frac{AB\cdot AD}{AX\cdot \frac{AB}{AC}} = \frac{AD\cdot AC}{AX} = \frac{\sqrt{AB\cdot AC\cdot AD\cdot AE}}{AX}$$
which is symmetric in $B$ and $C$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
math_comb01
662 posts
#22
Y by
Very Nice Problem!
[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(15 cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -3.582269769522469, xmax =9.3495599740257218, ymin = -6.750263899423706, ymax = 4.296190961229847;  /* image dimensions */
pen zzttff = rgb(0.6,0.2,1); pen ffvvqq = rgb(1,0.3333333333333333,0); pen ccqqqq = rgb(0.8,0,0); pen ttffqq = rgb(0.2,1,0); pen fuqqzz = rgb(0.9568627450980393,0,0.6); 

draw((-0.9162004708649716,4.002019967362306)--(-1.54,-2.25)--(6.4,-1.69)--cycle, linewidth(0.4) + zzttff); 
 /* draw figures */
draw((-0.9162004708649716,4.002019967362306)--(-1.54,-2.25), linewidth(0.4) + zzttff); 
draw((-1.54,-2.25)--(6.4,-1.69), linewidth(0.4) + zzttff); 
draw((6.4,-1.69)--(-0.9162004708649716,4.002019967362306), linewidth(0.4) + zzttff); 
draw(circle((2.2537760815942054,0.5286034145393064), 4.702485926886521), linewidth(0.8) + ffvvqq); 
draw((xmin, 0.07052896725440806*xmin + 0.3696469150817805)--(xmax, 0.07052896725440806*xmax + 0.3696469150817805), linewidth(0.4)); /* line */
draw(circle((4.501891557302407,-1.575832419914503), 6.079387758338865), linewidth(0.4) + blue); 
draw(circle((-0.4654900211539337,-7.461514690475687), 8.969132346717876), linewidth(0.4) + ccqqqq); 
draw((-0.9162004708649716,4.002019967362306)--(8.418109611952028,-6.225799265460478), linewidth(0.4)); 
draw((-0.7399765524591768,1.503416552822999)--(2.2537760815942054,0.5286034145393064), linewidth(0.4)); 
draw((-0.5637526340533822,-0.9951868617163078)--(8.418109611952028,-6.225799265460478), linewidth(0.4)); 
draw((2.2537760815942054,0.5286034145393064)--(2.43,-1.97), linewidth(0.4)); 
draw((-0.5637526340533822,-0.9951868617163078)--(5.423752634053378,-2.9448131382836977), linewidth(0.4)); 
draw(circle((3.2243161541048657,-4.775751493570609), 5.392414025604744), linewidth(0.4) + ttffqq); 
draw(circle((0.9920346646962718,-6.8130193744306435), 7.449256109078176), linewidth(0.4) + ttffqq); 
draw(circle((0.8450117237704114,-0.23329172358850042), 2.35124296344326), linewidth(0.4) + fuqqzz); 
draw((-1.54,-2.25)--(3.4407305698579895,0.6123180887745355), linewidth(0.4)); 
draw((-1.2876844867144508,0.2788278580842878)--(6.4,-1.69), linewidth(0.4)); 
draw((-1.54,-2.25)--(8.418109611952028,-6.225799265460478), linewidth(0.4)); 
draw((8.418109611952028,-6.225799265460478)--(6.4,-1.69), linewidth(0.4)); 
draw((8.418109611952028,-6.225799265460478)--(3.4407305698579895,0.6123180887745355), linewidth(0.4)); 
draw((8.418109611952028,-6.225799265460478)--(-1.2876844867144508,0.2788278580842878), linewidth(0.4)); 
draw((-0.7399765524591768,1.503416552822999)--(8.418109611952028,-6.225799265460478), linewidth(0.4)); 
draw(circle((3.103865690898049,0.5190026237808545), 3.9678954088420353), linewidth(0.4) + linetype("4 4") + blue); 
draw(circle((-3.230341837388172,0.0722575084357314), 2.8723049042034083), linewidth(0.4) + linetype("4 4") + ccqqqq); 
draw((xmin, -14.178571428571441*xmin-8.98839385168748)--(xmax, -14.178571428571441*xmax-8.98839385168748), linewidth(0.4)); /* line */
draw((xmin, 1.2853434304193623*xmin-0.27057111715418225)--(xmax, 1.2853434304193623*xmax-0.27057111715418225), linewidth(0.4)); /* line */
draw(circle((0.9503652849289946,-0.818840955612733), 2.872304904203409), linewidth(0.4) + blue); 
 /* dots and labels */
dot((-0.9162004708649716,4.002019967362306),dotstyle); 
label("$A$", (-0.8552137275571697,3.913076919819897), NE * labelscalefactor); 
dot((-1.54,-2.25),dotstyle); 
label("$B$", (-1.477774044848339,-2.0890430622693166), NE * labelscalefactor); 
dot((6.4,-1.69),dotstyle); 
label("$C$", (6.455879229349382,-1.5303350852131397), NE * labelscalefactor); 
dot((2.2537760815942054,0.5286034145393064),linewidth(4pt) + dotstyle); 
label("$O$", (2.321440199133668,0.6566075678353237), NE * labelscalefactor); 
dot((-0.5637526340533822,-0.9951868617163078),linewidth(4pt) + dotstyle); 
label("$H$", (-0.5040258562647153,-0.8598855127457276), NE * labelscalefactor); 
dot((-1.2876844867144508,0.2788278580842878),linewidth(4pt) + dotstyle); 
label("$D$", (-1.2223646839083722,0.4011982068953572), NE * labelscalefactor); 
dot((3.4407305698579895,0.6123180887745355),linewidth(4pt) + dotstyle); 
label("$E$", (3.502708493481015,0.7364229931290632), NE * labelscalefactor); 
dot((-0.7399765524591768,1.503416552822999),linewidth(4pt) + dotstyle); 
label("$X$", (-0.6796197919109425,1.6303557564189461), NE * labelscalefactor); 
dot((8.418109611952028,-6.225799265460478),linewidth(4pt) + dotstyle); 
label("$F$", (8.48319103181037,-6.095777412015042), NE * labelscalefactor); 
dot((5.423752634053378,-2.9448131382836977),linewidth(4pt) + dotstyle); 
label("$A'$", (5.482131040765758,-2.8233449749717203), NE * labelscalefactor); 
dot((2.43,-1.97),linewidth(4pt) + dotstyle); 
label("$M$", (2.4970341347798954,-1.8495967863880978), NE * labelscalefactor); 
dot((-1.228100235432486,0.8760099836811528),linewidth(4pt) + dotstyle); 
label("$P$", (-1.1585123436733804,1.0077954391277777), NE * labelscalefactor); 
dot((2.7418997645675143,1.1560099836811528),linewidth(4pt) + dotstyle); 
label("$N$", (2.800332750896106,1.279167885126492), NE * labelscalefactor); 
dot((1.5817007453631895,-0.4560261269164034),linewidth(4pt) + dotstyle); 
label("$J$", (1.650990626666255,-0.33310370580704657), NE * labelscalefactor); 
dot((-0.0448438436610229,-8.352572211207967),dotstyle); 
label("$A'_{1}$", (-8.182269769522469,4.296190961229847), NE * labelscalefactor); 
dot((-0.397291680472613,-3.3553653821293556),linewidth(4pt) + dotstyle); 
label("$K$", (-0.3284319206184881,-3.2224221014404177), NE * labelscalefactor); 
dot((1.725249073262489,1.9469664450008537),linewidth(4pt) + dotstyle); 
label("$L$", (1.7946583921949864,2.0773221380638875), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */ [/asy]
We first give 2 solutions
Solution 1:
Let $K$ be the reflection of orthocenter in $BC$, and Let $BL \perp AC$, Let $F$ be the intersection of the circles.
Claim 1: $\measuredangle BXE = \measuredangle CXD = 90^\circ$
Proof
Now just invert at $A$ with radius $\sqrt{AB \cdot AE}$, then do some angle chasing to get the inverse of $X$ is $F$. Hence we're done.
$\quad$
$\quad$
Solution 2:
Let $(COD)$ and $(BOE)$ intersect at $F'$, $(FBD),(FCE)$ intersect at $X'$
Claim: $FA,FD$ are isogonal in $BFC$
Claim 2 $A-O-F$
CLaim 3 $FO$ and $FJ$ are isogonal where $J = BE \cap CD$
Claim 4: $F-J-X$
Claim 5: $AX \perp BC$
ALL the proofs of claims are angle chase or DDIT.
Hence we're done
Fact: While playing around with this problem, I found out that under $\sqrt{XB \cdot XC}$ inversion $H$ and $F$ are interchanged. I will be interested in any solution using that.
Remark
This post has been edited 2 times. Last edited by math_comb01, Dec 25, 2023, 6:21 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bin_sherlo
698 posts
#23
Y by
Let $AH\cap (ABC)=F$ and $(BOE)\cap (COD)=P,(BOE)\cap (ABC)=Q,QC\cap AF=W$. Let $EF$ be the altitude from $E$ to $BC$. Let $C'$ be the antipode of $C$ on $(ABC)$. We will show that $P\in AO,O\in (CEX)$ and similarily $P\in (CDX)$.
Claim: $A,O,P$ are collinear.
Proof: If $D^*,E^*,P^*$ are the images of $D,E,P$ under the inversion around $(ABC)$, then $F,B,D^*$ and $F,C,E^*$ are collinear. DDIT at $P^*BFC$ gives $(\overline{AD^*},\overline{AE^*}),(\overline{AB},\overline{AC}),(\overline{AF},\overline{AP^*})$ is an involution which must be reflection over the angle bisector of $\measuredangle CAB$ thus, $P^*$ lies on $AO$.
Claim: $E,C,P,W$ are concyclic.
Proof: First notice that $\measuredangle BQE=90-\measuredangle A=\measuredangle BQC'$ hence $Q,E,C'$ are collinear and $\measuredangle CQE=90$.
\[\measuredangle APQ=\measuredangle OPQ=90-\measuredangle QAB=\measuredangle AWQ\]Thus, $A,W,Q,P$ are concyclic. Since $E$ lies on the perpendicular bisector of $BC'$, we have $EC'=EB$ and since $C'B\perp BC$ we observe $\measuredangle OBQ=180-\measuredangle QEO=\measuredangle (BC,EQ)=\measuredangle EBC$ so $\measuredangle OBE=\measuredangle QBC$.
\[\measuredangle WPE=\measuredangle WPO+\measuredangle OPE=\measuredangle WQA+\measuredangle OBE=180-\measuredangle B+\measuredangle QBC=180-\measuredangle ACQ\]Which proves the claim.
Claim: $X$ lies on $(ECPW)$.
Proof: Let $A'$ be the reflection of $A$ over $E$. Note that $\measuredangle AFA'=90$ and $VH=VF=VA'$. Since $E,V,C,Q$ lie on the circle with diameter $EC$, we get $\measuredangle FQC'=\measuredangle C=\measuredangle VQC'$ hence $F,V,Q$ are collinear. We have $\measuredangle BCQ=\measuredangle EVQ=90-\measuredangle VFA'=\measuredangle A'HF$ thus,
\[\measuredangle XEA=\measuredangle HA'A=\measuredangle C-\measuredangle FA'H=\measuredangle BCQ-90=\measuredangle AWC\]As desired.$\blacksquare$
Z K Y
N Quick Reply
G
H
=
a