Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Tangents to a cyclic quadrilateral
v_Enhance   23
N an hour ago by Ilikeminecraft
Source: ELMO Shortlist 2013: Problem G9, by Allen Liu
Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\omega$ whose diagonals meet at $F$. Lines $AB$ and $CD$ meet at $E$. Segment $EF$ intersects $\omega$ at $X$. Lines $BX$ and $CD$ meet at $M$, and lines $CX$ and $AB$ meet at $N$. Prove that $MN$ and $BC$ concur with the tangent to $\omega$ at $X$.

Proposed by Allen Liu
23 replies
v_Enhance
Jul 23, 2013
Ilikeminecraft
an hour ago
Strange angle condition and concyclic points
lminsl   128
N an hour ago by Giant_PT
Source: IMO 2019 Problem 2
In triangle $ABC$, point $A_1$ lies on side $BC$ and point $B_1$ lies on side $AC$. Let $P$ and $Q$ be points on segments $AA_1$ and $BB_1$, respectively, such that $PQ$ is parallel to $AB$. Let $P_1$ be a point on line $PB_1$, such that $B_1$ lies strictly between $P$ and $P_1$, and $\angle PP_1C=\angle BAC$. Similarly, let $Q_1$ be the point on line $QA_1$, such that $A_1$ lies strictly between $Q$ and $Q_1$, and $\angle CQ_1Q=\angle CBA$.

Prove that points $P,Q,P_1$, and $Q_1$ are concyclic.

Proposed by Anton Trygub, Ukraine
128 replies
lminsl
Jul 16, 2019
Giant_PT
an hour ago
Two lines meet at circle
mathpk   51
N an hour ago by Ilikeminecraft
Source: APMO 2008 problem 3
Let $ \Gamma$ be the circumcircle of a triangle $ ABC$. A circle passing through points $ A$ and $ C$ meets the sides $ BC$ and $ BA$ at $ D$ and $ E$, respectively. The lines $ AD$ and $ CE$ meet $ \Gamma$ again at $ G$ and $ H$, respectively. The tangent lines of $ \Gamma$ at $ A$ and $ C$ meet the line $ DE$ at $ L$ and $ M$, respectively. Prove that the lines $ LH$ and $ MG$ meet at $ \Gamma$.
51 replies
mathpk
Mar 22, 2008
Ilikeminecraft
an hour ago
Hard geometry
Lukariman   5
N an hour ago by Lukariman
Given circle (O) and chord AB with different diameters. The tangents of circle (O) at A and B intersect at point P. On the small arc AB, take point C so that triangle CAB is not isosceles. The lines CA and BP intersect at D, BC and AP intersect at E. Prove that the centers of the circles circumscribing triangles ACE, BCD and OPC are collinear.
5 replies
Lukariman
Yesterday at 4:28 AM
Lukariman
an hour ago
P,Q,B are collinear
MNJ2357   29
N 2 hours ago by cj13609517288
Source: 2020 Korea National Olympiad P2
$H$ is the orthocenter of an acute triangle $ABC$, and let $M$ be the midpoint of $BC$. Suppose $(AH)$ meets $AB$ and $AC$ at $D,E$ respectively. $AH$ meets $DE$ at $P$, and the line through $H$ perpendicular to $AH$ meets $DM$ at $Q$. Prove that $P,Q,B$ are collinear.
29 replies
MNJ2357
Nov 21, 2020
cj13609517288
2 hours ago
Factorising and prime numbers...
Sadigly   5
N 2 hours ago by ektorasmiliotis
Source: Azerbaijan Senior MO 2025 P4
Prove that for any $p>2$ prime number, there exists only one positive number $n$ that makes the equation $n^2-np$ a perfect square of a positive integer
5 replies
Sadigly
May 8, 2025
ektorasmiliotis
2 hours ago
IMO 2011 Problem 3
Amir Hossein   85
N 2 hours ago by NerdyNashville
Let $f : \mathbb R \to \mathbb R$ be a real-valued function defined on the set of real numbers that satisfies
\[f(x + y) \leq yf(x) + f(f(x))\]
for all real numbers $x$ and $y$. Prove that $f(x) = 0$ for all $x \leq 0$.

Proposed by Igor Voronovich, Belarus
85 replies
Amir Hossein
Jul 18, 2011
NerdyNashville
2 hours ago
Angle Relationships in Triangles
steven_zhang123   0
3 hours ago
In $\triangle ABC$, $AB > AC$. The internal angle bisector of $\angle BAC$ and the external angle bisector of $\angle BAC$ intersect the ray $BC$ at points $D$ and $E$, respectively. Given that $CE - CD = 2AC$, prove that $\angle ACB = 2\angle ABC$.
0 replies
steven_zhang123
3 hours ago
0 replies
acute triangle and its circumcenter and orthocenter
N.T.TUAN   6
N 4 hours ago by MathLuis
Source: USA TST 2005, Problem 2
Let $A_{1}A_{2}A_{3}$ be an acute triangle, and let $O$ and $H$ be its circumcenter and orthocenter, respectively. For $1\leq i \leq 3$, points $P_{i}$ and $Q_{i}$ lie on lines $OA_{i}$ and $A_{i+1}A_{i+2}$ (where $A_{i+3}=A_{i}$), respectively, such that $OP_{i}HQ_{i}$ is a parallelogram. Prove that
\[\frac{OQ_{1}}{OP_{1}}+\frac{OQ_{2}}{OP_{2}}+\frac{OQ_{3}}{OP_{3}}\geq 3.\]
6 replies
N.T.TUAN
May 14, 2007
MathLuis
4 hours ago
Nice one
imnotgoodatmathsorry   3
N 4 hours ago by Bergo1305
Source: Own
With $x,y,z >0$.Prove that: $\frac{xy}{4y+4z+x} + \frac{yz}{4z+4x+y} +\frac{zx}{4x+4y+z} \le \frac{x+y+z}{9}$
3 replies
1 viewing
imnotgoodatmathsorry
May 2, 2025
Bergo1305
4 hours ago
Imtersecting two regular pentagons
Miquel-point   2
N 4 hours ago by ohiorizzler1434
Source: KoMaL B. 5093
The intersection of two congruent regular pentagons is a decagon with sides of $a_1,a_2,\ldots ,a_{10}$ in this order. Prove that
\[a_1a_3+a_3a_5+a_5a_7+a_7a_9+a_9a_1=a_2a_4+a_4a_6+a_6a_8+a_8a_{10}+a_{10}a_2.\]
2 replies
1 viewing
Miquel-point
Yesterday at 6:27 PM
ohiorizzler1434
4 hours ago
Circumcircles intersect on AO
talkon   21
N Mar 26, 2025 by bin_sherlo
Source: InfinityDots MO Problem 3
Let $\triangle ABC$ be an acute triangle with circumcenter $O$ and orthocenter $H$. The line through $O$ parallel to $BC$ intersect $AB$ at $D$ and $AC$ at $E$. $X$ is the midpoint of $AH$. Prove that the circumcircles of $\triangle BDX$ and $\triangle CEX$ intersect again at a point on line $AO$.

Proposed by TacH
21 replies
talkon
Mar 28, 2017
bin_sherlo
Mar 26, 2025
Circumcircles intersect on AO
G H J
G H BBookmark kLocked kLocked NReply
Source: InfinityDots MO Problem 3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
talkon
276 posts
#1 • 12 Y
Y by artsolver, jonyj1005, Ankoganit, aopser123, anantmudgal09, monkey8, don2001, GeoMetrix, ApraTrip, Adventure10, Mango247, Funcshun840
Let $\triangle ABC$ be an acute triangle with circumcenter $O$ and orthocenter $H$. The line through $O$ parallel to $BC$ intersect $AB$ at $D$ and $AC$ at $E$. $X$ is the midpoint of $AH$. Prove that the circumcircles of $\triangle BDX$ and $\triangle CEX$ intersect again at a point on line $AO$.

Proposed by TacH
This post has been edited 1 time. Last edited by talkon, Jan 3, 2019, 6:16 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anantmudgal09
1980 posts
#2 • 5 Y
Y by artsolver, mihajlon, don2001, Adventure10, MS_asdfgzxcvb
diagram

solution

Comment
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rkm0959
1721 posts
#3 • 5 Y
Y by anantmudgal09, don2001, fuzimiao2013, Adventure10, Mango247
Let $AP, BQ, CR$ be the altitude from $A, B, C$, wrt $\triangle ABC$. Let $M$ be the midpoint of $BC$. Let $O, H$ be the circumcenter and orthocenter of $\triangle ABC$. Let $H'=QR \cap AP$. Let $O'$ be the circumcenter of $\triangle BXC$. Let $Y'=XO' \cap AO$. Let $O_1, O_2$ be the circumcenters of $\triangle BXD$ and $\triangle CXE$, and $\omega_1$, $\omega_2$ be the corresponding circumcircle. Let $\omega$ be the circumcircle of $\triangle ABC$.
Let $R$ be the circumradius of $\triangle ABC$.

Lemma. $\angle BXE = \angle CXD = 90$. Also, $H'$ is the orthocenter of $\triangle XBC$.

Proof of Lemma. Let $AO \cap BC = K$ and $QR \cap BC = T$.
Now, harmonic chasing, we have $(T,H',R,Q)=(T,P;B,C)=-1$ by projecting at $A$.
Also, we have $(P,H';H,A)=-1$, so since $X$ is the midpoint of $AH$, we have $PB \cdot PC = PH \cdot PA = PX \cdot PH'$, which forces $H'$ to be the orthocenter of $\triangle XBC$. This proves the second claim.

It now suffices to show that $CH' \parallel XE$, which will show that $\angle BXE=90$.
It will similarly follow that $BH' \parallel XD$, which will show that $\angle CXD = 90$.
Let's show that $\frac{AX}{AH'}=\frac{AE}{AC}$.

We have $\frac{AE}{AC} = \frac{AO}{AK} = 1-\frac{OK}{AK} = 1-\frac{OM}{AP} = 1-\frac{AX}{AP}$.
(Note that $OM = \frac{1}{2}AH = AX$ by a well known lemma)
It now suffices to show that $\frac{AX}{AH'} + \frac{AX}{AP} = 1$.
$(A,H;H',P)=-1$ shows $\frac{1}{AH'}+\frac{1}{AP} = \frac{2}{AH} = \frac{1}{AX}$, which implies the desired.
The Lemma is now proved $\blacksquare$.

I claim that $\triangle AXB \sim \triangle AEY'$ and $\triangle AXC \sim \triangle ADY'$.
I will just show the first one, the second will follow similarly.

Since $Y' \in AO$, we have $\angle XAB = \angle HAB = \angle OAC = \angle Y'AE$. We will show $\frac{AX}{AB} = \frac{AE}{AY'}$.

Notice the similar triangles $\triangle AXY' \sim \triangle OO'Y'$. This shows that $\frac{AY'}{AO} = \frac{AX}{AX-OO'} = \frac{AH}{AH-2OO'} = \frac{AH}{AH-2OM+2O'M} = \frac{AH}{AH-AH+XH'} = \frac{AH}{XH'}$.
Therefore, $AY' = \frac{R \cdot AH}{XH'}$.

Now note that $X$ is the center of $(ARHQ)$ so $RX = AX$. Therefore, from sine law in $\triangle XH'R$, we have $XH' = \frac{RX}{ \sin \angle AH'R} \cdot \sin \angle XRQ = \frac{AH \cdot \sin (90-A)}{2 \sin (90+C-B)}$. Also, we have, from sine law in $\triangle AOE$, $AE= \frac{R}{\sin \angle AEO} \cdot \angle AOE = \frac{R \sin (90+C-B)}{\sin C}$. Now $AX \cdot AY' = AX \cdot \frac{R \cdot AH \cdot 2 \cdot \sin (90+C-B)}{AH \cdot \sin (90-A)} = AX \cdot \frac{2R \cdot \sin (90+C-B)}{\sin (90-A)} = AX \cdot \frac{2 \cdot AE \cdot \sin C}{\sin (90-A)} = \frac{AH \cdot AE \cdot \sin C}{\cos A} = 2R \cdot AE \cdot \sin C = AB \cdot AE$.

This implies $\frac{AX}{AB} = \frac{AE}{AY'}$. Therefore, we have $\triangle AXB \sim \triangle AEY'$ as desired.
Similarly, we have $\triangle AXC \sim \triangle ADY'$. This also shows $\triangle AXD \sim \triangle ACY'$ and $\triangle AXE \sim \triangle ABY'$.

Now let's angle chase. I claim that $Y'$ lies on both circles. This will show that $Y' \equiv Y$, which will finish the problem.

I will show $\angle DBY' + \angle DXY' = 180$. Note that from $\angle BXE = \angle CXD = 90$, we have $\angle BXD = \angle CXE$. We have $\angle ABY' + \angle DXO' = \angle AXE + \angle DXO'$. Since $O'$ and $H'$ are isogonal wrt $\angle BXC$, we have $\angle AXE + \angle DXO' = \angle AXE + \angle BXD + \angle BXO' = \angle AXE + \angle CXE + \angle H'AC  = 180$. Therefore, we have $D, B, X, Y'$ cyclic, which implies $Y' \in \omega_1$.

Similarly, we have $Y' \in \omega_2$, so $Y' \equiv Y$. Since $Y' \in AO$, so is $Y$. We are done. $\blacksquare$.
This post has been edited 1 time. Last edited by rkm0959, Mar 28, 2017, 2:07 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
aryanna30
158 posts
#4 • 4 Y
Y by GGPiku, TacH, Adventure10, Mango247
My solution : Let $B',H',B_1,F$ be the antipode of $B$ in the circle $\odot O$,the intersection of $AH, \odot O $, the foot of $B$ in $AC$, the intersection of $(BDX),(CEX)$ . $\angle B'AE=\angle B'BC=\angle B'OE$ so $A,O,E,B'$are concyclic.$\angle OB'E=\angle EAO=\angle BAH'$ so $B,H',B_1,E$ are concyclic. by simple angle chasing : $X,B,H',B_1,E$ are concyclic. thus $\angle BXE=\angle CXD=90$ so $\angle EFC=\angle CXE=\angle XBD=\angle DFB=\alpha$ , $\angle BFC=\angle XFC+\angle XFB=\angle XEA+\angle XDA=180-\angle A-(180-(90+\alpha))=\alpha+90-\angle A$ so $\angle BFE=90-\angle A$ $\rightarrow$ $B,F,O,E$ are concyclic . similarly $C,O,D,F$ are concyclic.$AB$ cuts $(BOE),(COD)$ at $E',D'$ res. $\angle EE'B=\angle EFD=\angle DFC=\angle CD'B$ $\rightarrow$ $E'E \parallel CD'$ so $\tfrac {AE'}{AD'}=\tfrac {AE}{AC}=\tfrac {AD}{AB}$ thus $AD.AD'=AE.AE'$ so $A$ lies on radical axis of $(BOE),(COD)$ or line $OF$. done . $\blacksquare$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
artsolver
139 posts
#5 • 1 Y
Y by Adventure10
Is it secret who is the author of this amazing problem?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SmartClown
82 posts
#6 • 2 Y
Y by Adventure10, Mango247
Let $C_1,B_1$ be the midpoints of $AB,AC$ respectively. Note that $X$ is the orthocenter of $AB_1C_1$ and that $X_1$, the reflection of $X$ over $B_1C_1$ lies on $DE$. Let $C_1X$ cut $AO$ at $R_1$. By sine theorems in $\triangle AR_1C_1, \triangle DX_1R_1$ we get $\frac{C_1R_1}{C_1A}=\frac{cos \angle ACB}{sin \angle ABC}=\frac{C_1D}{C_1X_1}$ so $BDXR_1$ is cyclic. Because of same reason $CER_2X$ is cyclic, where $XB_1 \cap AO = R_2$. By sine theorems in $\triangle AR_1C_1$ and $AR_2B_1$ we get $\frac{AR_1}{AR_2}=\frac{AB^2}{AC^2}=\frac{AC_1 \cdot AB}{AB_1 \cdot AC}$, so our two circles must intersect on $AO$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TelvCohl
2312 posts
#7 • 12 Y
Y by rkm0959, talkon, anantmudgal09, kapilpavase, Saro00, don2001, enhanced, AmirKhusrau, fuzimiao2013, Adventure10, Mango247, ehuseyinyigit
Let $ S $ be the projection of $ D $ on $ BC. $ Obviously $ ADSX $ and $ DXHS $ are parallelogram, so $ H $ is the orthocenter of $ \triangle CXS $ $ \Longrightarrow $ $ CX $ is perpendicular to $ DX $ $ ( \bigstar ). $ Let the perpendicular from $ B, $ $ C $ to $ AB, $ $ AC $ cut $ AC, $ $ AB $ at $ Y, $ $ Z, $ respectively and let $ W $ be the second intersection of $ AO $ with $ \odot (AYZ). $ Notice $ (B,E,O,W,Y) $ and $ (C,D,O,W,Z) $ are concyclic, so $$ \measuredangle BWD = \underbrace{ \measuredangle (\perp AB, OY) + \measuredangle (OZ,AB) = \measuredangle (BX,\perp CA) + \measuredangle (CA, CX) }_{\because \ \triangle ABC \cup X \text{ and } \triangle AYZ \cup O \ \text{are inversely similar}} \stackrel{ (\bigstar )}{=} \measuredangle BXD $$$ \Longrightarrow $ $ W $ $ \in $ $ \odot (BDX). $ Similarly, $ W $ lies on $ \odot (CEX), $ so the second intersection of $ \odot (BDX), $ $ \odot (CEX) $ lies on $ AO. $
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
baopbc
225 posts
#8 • 3 Y
Y by don2001, Adventure10, Mango247
Let the line passes through $X$ and perpendicular to $AB$ intersects $AO$ at $K$ and $AC$ at $M$. $F$ is the reflection of $E$ through $M$, since $M$ is the midpoint of $AC$ so $ME\cdot MC$ $=$ $MF\cdot MA$. Note that $\angle AKX$ $=$ $\angle ACB$ $=$ $\angle AEO$ $=$ $\angle OFM$ so $KFMO$ is a cyclic quadrilateral. Thus $\angle FKM$ $=$ $\angle FOM$ $=$ $\angle EOM$ $=$ $\angle XAF$ which imply $AFKX$ is a cyclic quadrilateral i.e $MF\cdot MA$ $=$ $MK\cdot MX$. Hence the circle $(CEX)$ passes through $K$. Define $L$ similarly and we get $(BDX)$ passes through $L$. The tangent at $A$ of $(O)$ meets $BC$ at $S$, then we get $\triangle ABC$ $\cup$ $S$ $\sim$ $\triangle XLK$ $\cup$ $A$ which imply $\tfrac{AK}{AL}$ $=$ $\tfrac{SC}{SB}$ $=$ $\tfrac{AC^2}{AB^2}$ $=$ $\tfrac{AE\cdot AC}{AD\cdot AB}$. Hence $(CEX)$ and $(BDX)$ intersects on $AO$. $\square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
andria
824 posts
#10 • 3 Y
Y by mijail, Adventure10, Mango247
From Two parallel lines $\angle BXE=\angle CXD=90^{\circ}$ hence if $Y=\odot(CEX)\cap \odot(BDX)$ then:
$$90^{\circ}=\angle BXE=\angle A+\angle ABX+\angle AEX=\angle A+\angle DYX+\angle CYX=\angle A+\angle DYC$$$$\Longrightarrow \angle DYC=90^{\circ}-\angle A\ \clubsuit$$On the other hand $\angle EOC=\angle OCB=90^{\circ}-\angle A$ ; So combining this with $\clubsuit\Longrightarrow YCOD$ is cyclic. Let $AB\cap \odot(YCOD)=C'$ then $\angle AC'C=\angle DYC=90^{\circ}-\angle A\Longrightarrow \angle C'CA=90^{\circ}$ thus we conclude that $C'DOY$ is cyclic ; similarly $B'EOY$ is cyclic so because $DEB'C'$ is cyclic $\Longrightarrow AD.AC'=AE.AB'\Longrightarrow A,O,Y$ are collinear.
Q.E.D

[asy]
import graph; size(11.363882971513085cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ real xmin = -9.989189285669891, xmax = 28.374693685843194, ymin = -4.498210783562595, ymax = 13.508095734235024;  /* image dimensions */
pen uuuuuu = rgb(0.26666666666666666,0.26666666666666666,0.26666666666666666); pen evefev = rgb(0.8980392156862745,0.9372549019607843,0.8980392156862745); pen qqwuqq = rgb(0.,0.39215686274509803,0.); 

filldraw(arc((3.8818502271691893,2.1361015875017513),0.6028897271584036,3.5305225804302633,52.658962959976755)--(3.8818502271691893,2.1361015875017513)--cycle, evefev, qqwuqq); 
filldraw(arc((11.335929525368321,2.5959985267491685),0.6028897271584036,134.40208220088383,183.53052258043027)--(11.335929525368321,2.5959985267491685)--cycle, evefev, qqwuqq); 
filldraw(arc((10.159894859232196,-1.7419003822357084),0.6028897271584036,74.83132569953467,123.95976607908116)--(10.159894859232196,-1.7419003822357084)--cycle, evefev, qqwuqq); 
filldraw(arc((7.34316369040184,6.672980353946524),0.6028897271584036,-45.59791779911621,3.5305225804303073)--(7.34316369040184,6.672980353946524)--cycle, evefev, qqwuqq); 
 /* draw figures */
draw(circle((7.34316369040184,6.672980353946524), 5.706484016640463)); 
draw((5.53180383480297,12.084351280587748)--(5.797530020669884,7.777420983766684)); 
draw((5.797530020669884,7.777420983766684)--(6.063256206536798,3.47049068694562)); 
draw((5.797530020669884,7.777420983766684)--(10.159894859232196,-1.7419003822357084)); 
draw((10.159894859232196,-1.7419003822357084)--(3.8818502271691893,2.1361015875017513)); 
draw((10.159894859232196,-1.7419003822357084)--(11.335929525368321,2.5959985267491685)); 
draw((5.797530020669884,7.777420983766684)--(4.606302605058149,6.5041232777145845)); 
draw((5.797530020669884,7.777420983766684)--(8.787486563916426,6.7620912477593755)); 
draw((11.335929525368321,2.5959985267491685)--(7.34316369040184,6.672980353946524)); 
draw((5.797530020669884,7.777420983766684)--(3.8818502271691893,2.1361015875017513)); 
draw(circle((8.336238619796323,2.3265288496558147), 4.45845696340593), red); 
draw(circle((6.280151167171303,1.63829026431878), 5.145687507334737), red); 
draw((7.34316369040184,6.672980353946524)--(3.8818502271691893,2.1361015875017513)); 
draw((3.8818502271691893,2.1361015875017513)--(7.608889876268755,2.36605005712546)); 
draw((7.608889876268755,2.36605005712546)--(11.335929525368321,2.5959985267491685)); 
draw((5.53180383480297,12.084351280587748)--(4.606302605058149,6.5041232777145845)); 
draw((4.606302605058149,6.5041232777145845)--(3.8818502271691893,2.1361015875017513)); 
draw((3.8818502271691893,2.1361015875017513)--(3.1251008188296665,-2.426652198074765)); 
draw((3.1251008188296665,-2.426652198074765)--(12.49065475614913,0.7082998607440981)); 
draw((12.49065475614913,0.7082998607440981)--(11.335929525368321,2.5959985267491685)); 
draw((11.335929525368321,2.5959985267491685)--(8.787486563916426,6.7620912477593755)); 
draw((8.787486563916426,6.7620912477593755)--(5.53180383480297,12.084351280587748)); 
draw((10.159894859232196,-1.7419003822357084)--(4.606302605058149,6.5041232777145845)); 
draw((8.787486563916426,6.7620912477593755)--(7.34316369040184,6.672980353946524)); 
draw((7.34316369040184,6.672980353946524)--(4.606302605058149,6.5041232777145845)); 
draw((5.53180383480297,12.084351280587748)--(10.159894859232196,-1.7419003822357084), linetype("4 4") + blue); 
 /* dots and labels */
dot((5.53180383480297,12.084351280587748)); 
label("$A$", (5.344306108392175,12.463086873827125), NE * labelscalefactor); 
dot((3.8818502271691893,2.1361015875017513)); 
label("$B$", (3.1739030906219217,1.852227675839244), NE * labelscalefactor); 
dot((11.335929525368321,2.5959985267491685)); 
label("$C$", (11.634455595078187,2.495310051474873), NE * labelscalefactor); 
dot((7.34316369040184,6.672980353946524),linewidth(3.pt) + uuuuuu); 
label("$O$", (6.83143410204957,6.936597708208438), NE * labelscalefactor,uuuuuu); 
dot((6.063256206536798,3.47049068694562),linewidth(3.pt) + uuuuuu); 
label("$H$", (6.148159077936713,3.600607884598611), NE * labelscalefactor,uuuuuu); 
dot((4.606302605058149,6.5041232777145845),linewidth(3.pt) + uuuuuu); 
label("$D$", (4.118430329836754,6.7356344658223035), NE * labelscalefactor,uuuuuu); 
dot((8.787486563916426,6.7620912477593755),linewidth(3.pt) + uuuuuu); 
label("$E$", (9.001837119819823,7.157657274833185), NE * labelscalefactor,uuuuuu); 
dot((5.797530020669884,7.777420983766684),linewidth(3.pt) + uuuuuu); 
label("$X$", (5.886906862834738,7.901221271661881), NE * labelscalefactor,uuuuuu); 
dot((10.159894859232196,-1.7419003822357084),linewidth(3.pt) + uuuuuu); 
label("$Y$", (10.167423925659405,-2.3077114415537325), NE * labelscalefactor,uuuuuu); 
dot((12.49065475614913,0.7082998607440981),linewidth(3.pt) + uuuuuu); 
label("$B'$", (12.94071667058806,0.445484979136305), NE * labelscalefactor,uuuuuu); 
dot((3.1251008188296665,-2.426652198074765),linewidth(3.pt) + uuuuuu); 
label("$C'$", (2.4504354180318373,-2.8503121959962945), NE * labelscalefactor,uuuuuu); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
[/asy]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
juckter
323 posts
#11 • 3 Y
Y by don2001, Adventure10, Mango247
Fairly long solution, but it exhibits some interesting properties of the configuration that haven't been discussed in other solutions.

First, prove that $\angle CXD = \angle BXE = 90^{\circ}$ as has been done numerous times in this thread.

Let $\Omega$ be the circumcircle of $ABC$ and let $AH$ cut $\Omega$ at $A, F$. Let $M$ be the midpoint of $BC$ and let the line through $F$ parallel to $HM$ cut $AO$ at $P$. We shall prove that $BDXP$ and $CEXP$ are cyclic which is of course sufficient.

Notice that $DE$ is the perpendicular bisector of $AF$ and thus $\angle DFO = \angle DAO = \angle DBO$. Thus $B, D, O, F$ are concyclic. Analogously $C, E, O, F$ are concyclic. Using this fact we find that

$$\angle BFE = \angle BFO + \angle EFO = \angle ECO + \angle ABE = \angle CAO + \angle ABC = \angle BAH + \angle ABC = 90^{\circ}$$
Thus $F, B, X, E$ are concyclic and analogously $F, C, X, D$ are concyclic.

Now, let $Q = BE \cap CD, Y = (BDO) \cap BE, Z = (CEO) \cap CD$, then $\angle QYD = \angle BOD = \angle COE = \angle QZE$ which implies $D, E, Y, Z$ are concylic. Thus

$$\frac{QY}{QZ} = \frac{QD}{QE} = \frac{QC}{QB} \implies QY \cdot QB = QZ \cdot QC$$
Which implies $Q$ lies on radical axis $OF$ of $(BDO), (CEO) \implies O, Q, F$, are collinear.

Now, by Ceva, $A, Q, M$ are collinear, and since $OM$ is parallel to $AF$ we get $\frac{OQ}{OF} = \frac{QM}{QA} = \frac{OM}{AF} = \frac{AX}{AF} = \frac{OX}{FP}$ using the well known fact that $AH = 2OM$ ($XOMH$ is a parallelogram). It follows that $X, Q, P$ are collinear.

Now let $\mathcal{I}$ be the composition of the inversion with center $A$ and radius $\sqrt{AD \cdot AC}$ with the reflection about the angle bisector of $\angle BAC$, and let $\mathcal{I}(W) = W'$ for any point $W$. Then it's clear that $D = C', E = B'$, so $Q'$ is the intersection of the circumcircles of $ABE, ACD$. Now notice that rays $AH$ and $AO$ are swapped by $\mathcal{I}$ since $O, H$ are isogonal conjugates. Moreover, as triangles $ADF$ and $AOC$ are isosceles with $\angle FAD = \angle CAO$ we have:

$$\frac{AD}{AF} = \frac{AO}{AC} \implies AD \cdot AC = AO \cdot AF = AX \cdot AP$$
Where the last equality follows from $OX$ being parallel to $PF$. Thus $X = P'$. Now notice that

$$\angle BQC = \angle BXC + \angle XBQ + \angle XCQ = (\angle CXE + \angle CXD - \angle BXE) + \angle XFE + \angle XFD = 180^{\circ} - \angle DXE + \angle BAC$$
On the other hand, as $Q' = (ABE) \cap (ACD)$, it must also lie on $(DQB)$ and $EQC$. It follows that

$$\angle DQ'E = \angle DQ'Q + \angle EQ'Q = \angle DBQ + \angle ECQ = \angle BQC - \angle BAC = 180^{\circ} - \angle DXE$$
From which it follows that $X, D, Q', E$ are concyclic and hence $Q, B, P, C$ are concyclic.

Now, let $\angle ABC = \beta, \angle PBC = \alpha$, then $\angle DBP = \alpha + \beta$ and it suffices to prove that $\angle DXP = 180^{\circ} - \alpha - \beta$. But $\angle XDQ = \angle XFC = \angle ABC = \beta$ and $\angle DQX = \angle PQC = \angle PBC = \alpha$, so we are finally done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
EulerMacaroni
851 posts
#12 • 3 Y
Y by anantmudgal09, don2001, Adventure10
WLOG $AB<AC$, and define $\{A,H'\}\equiv AH\cap \odot(ABC)$, $P\equiv AH\cap DE$, $Q\equiv CH\cap AB$, $V\equiv BE\cap CD$, $U \equiv AO\cap XV$. Note that by reflection about $O$, $H'D$ passes through the antipode of $C$ with respect to $\odot(ABC)$, so $\angle CH'D=\angle CQD=\tfrac{\pi}{2}$. Then $AX\cdot AH'=AH\cdot AP=AQ\cdot AD$, so pentagon $CXQDH'$ is cyclic. Then $\angle AQX=\angle AH'D=\tfrac{\pi}{2}-\angle AH'C=\angle BCH$, so $\{CH,CD\}$ are isogonal with respect to $\angle XCB$ and consequently $\angle BCV=\angle XCQ=\angle XDQ$.

I now claim that $U\in\odot(BVC)$; note that $\{H,V\}$ are isogonal conjugates in $\triangle XBC$. Let $V'$ be the point on $\odot(BVC)$ with $VV'\parallel BC$; notice that $\overline{AOV'}$ are collinear from negative homothety through $V$. Then
\begin{align*}
\angle AUX&=\pi-\angle AXV-\angle XAO\\
&=\angle HXV-\angle XAO\\
&=\angle BXC-2\angle BXH-\angle B+\angle C\\
\end{align*}and $$\angle VCV'=\pi-\angle VV'C-\angle CVV'=\angle VBC-\angle VCB=\angle XBH-\angle XCH$$so we want to show that $$\angle BXC-2\angle BXH-\angle B+\angle C=\angle XBH-\angle XCH$$$$\Longrightarrow \angle BXC-\angle BXH=\angle B-\angle XCH$$$$\Longrightarrow \angle CXH+\angle XCH=\angle B$$which is true, as desired. Then $\angle BUX=\angle BUV=\angle BCV=\angle XDQ=\pi-\angle BDX$, and we're done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
atmchallenge
980 posts
#13 • 1 Y
Y by Adventure10
Is there a good complex solution to this? I tried it on the contest but got too messy to do by hand.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pieater314159
202 posts
#14 • 3 Y
Y by Adventure10, Mango247, Lcz
Let $P$ be the second intersection of $(BDX)$ and $(CEX)$, and perform an inversion about $A$ with radius $\sqrt{AB\cdot AE}=\sqrt{AC\cdot AD}$ and reflect across the angle bisector of $\angle BAC$. We see that $B\to E$ and $D\to C$, while lines $AX$ and $AO$ swap. We look at this and say it would be really nice if $X$ and $P$ are inverses of each other. In fact, this is true. We show this using complex numbers.

Let $(ABC)$ be the unit circle so $A=a,B=b,C=c$. Then

$$d+ab\bar{d}=a+b,d+bc\bar{d}=0 \implies d=\frac{c(a+b)}{c-a},$$
while

$$x=a+\frac{b+c}{2}.$$
Let $Q$ be the inverse of $X$ under this inversion: we have

$$(q-a)(x-a)=(c-a)(d-a) \implies (q-a)\left(\frac{b+c}{2}\right)=(c-a)\frac{ac+bc-ac+a^2}{c-a}=a^2+bc$$
$$q-a=\frac{2(a^2+bc)}{b+c}.$$
We want to show that $Q,B,X,D$ are concyclic; this is equivalent to $q-a,b-a,x-a,d-a$ being concyclic. These are

$$\frac{2(a^2+bc)}{b+c},b-a,\frac{b+c}{2},\frac{a^2+bc}{c-a}.$$
The cross ratio is

\begin{align*}
\frac{\frac{
\frac{2(a^2+bc)}{b+c}-\frac{b+c}{2}
}{
\frac{2(a^2+bc)}{b+c}-\frac{a^2+bc}{c-a}
}}{\frac{
(b-a)-\frac{b+c}{2}
}{
(b-a)-\frac{a^2+bc}{c-a}
}}
&=
\frac{\frac{
\frac{4(a^2+bc)-(b+c)^2}{2(b+c)}
}{
\frac{(a^2+bc)(2(c-a)-(b+c)}{(b+c)(c-a)}
}}{\frac{
\frac{2(b-a)-(b+c)}{2}
}{
\frac{(b-a)(c-a)-(a^2+bc)}{c-a}
}}\\
&=
\frac{\frac{
\frac{4a^2-(b-c)^2}{2(b+c)}
}{
-\frac{(a^2+bc)(2a+(b-c)}{(b+c)(c-a)}
}}{\frac{
-\frac{2a-(b-c)}{2}
}{
-\frac{a(b+c)}{c-a}
}}\\
&=
\frac{\frac{
\frac{(2a+(b-c))(2a-(b-c))}{2(b+c)}
}{
-\frac{(a^2+bc)(2a+(b-c))}{(b+c)(c-a)}
}}{\frac{
-\frac{2a-(b-c)}{2}
}{
-\frac{a(b+c)}{c-a}
}}\\
&=
-\frac{(2a+(b-c))(2a-(b-c))(b+c)(c-a)(2)(a)(b+c)}{(2)(b+c)(a^2+bc)(2a+(b-c))(2a-(b-c))(c-a)}\\
&=
-\frac{a(b+c)}{(a^2+bc)},
\end{align*}
the conjugate of which is

$$-\frac{\frac{1}{a}\frac{b+c}{bc}}{\frac{a^2+bc}{a^2bc}}=-\frac{a(b+c)}{a^2+bc},$$
so it is real, and the inverse of $X$ lies on $(BDX)$ and hence $(CEX)$. This point is obviously on $AO$, finishing the proof.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rmtf1111
698 posts
#15 • 2 Y
Y by Adventure10, Mango247
After establishing that $\angle{BXE}=\angle{DXC}=90^{\circ}$ it is easy to finish with inversion. Let $Y=(CEX) \cap (BDX).$ Let $Z'$ be the image of $Z$ under an inversion with pole $A,$ power $\sqrt{AC\cdot AD},$ followed by a reflection over the bisector of angle ${A}.$ Clearly $Y'$ lies inside triangle ${ADE}.$
$$360^{\circ}-\angle{BY'E}=\angle{AY'B}+\angle{AY'E}=\angle{AEY}+\angle{ABY}=360^{\circ}-\angle{BAC}-\angle{BYE} \implies \angle{BY'E}=\angle{BAC}+\angle{BYE}$$$$\angle{BYE}=\angle{BYX}+\angle{EYX}=\angle{ADX}+\angle{ACD}=90^{\circ}=\angle{BAC} \implies \angle{BY'E}=90^{\circ}$$Analogously, $\angle{CY'D}=90^{\circ},$ which means that $Y'$ is the intersection of circles $(DXC)$ and $(BXE)$ which lies inside $\triangle{ADE},$ but this is exactly $X,$ hence the conclusion.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GeoMetrix
924 posts
#16 • 3 Y
Y by sameer_chahar12, mueller.25, amar_04
This was a really nice prblem. One of the nicest configurations ive seen in a while. Here goes my solution.

Proof: Define $F$ as the required point of intersection. We begin with a few claims.

Claim 1: If $I=\overline{DH'} \cap \overline{BC}$ then $\angle IHC=90^\circ$.

Proof: For this notice that as $H'$ is the reflection of $H$ over $\overline{BC}$ $\implies$ $\angle CHI=\angle CH'D$. But now notice that trivially we have that $DA=DH'$ hence $$\angle CH'D=\angle DH'A+\angle AH'C=\angle B+90^\circ-\angle B=90^\circ$$. $\square$.

Now we bring the point $X$ in the picture.
Claim 2: $\angle CXD=90^\circ$.

Proof: For this notice that by claim1 it just suffices to show that $(DXCH')$ is cyclic. Now we use phantom points. Define $D=\odot(CXH') \cap \overline{AB}$ . Then we need to show that $\overline{OD}\parallel \overline{BC}$. Now i present a proof told to me by amar_04.

Now observe that it suffices to show that $\overline{AD}=\overline{DH'}$. Alter the labelling a bit. Let $\overline{CE}\perp \overline{AB}$ and $\overline{AQ}\perp \overline{BC}$ where $E\in \overline{AB}$ and $Q\in \overline{BC}$. Note That $\overline{HX}\cdot \overline{HH'}=\overline{HA}\cdot \overline{HQ}=\overline{HE}\cdot \overline{HC}$. So, $E\in\odot(CH'X)$. So now draw a line $\ell$ to $BC$ though $H'$ meeting $\overline{AB}$ at $T$. So, $\angle HTE=\angle EH'X=\angle XDA\implies \overline{AD}=\overline{DX}=\overline{DH'}$ $\square$.

Now back to the main problem. Observe by claim 2 we have that $(CXDH')$ is cyclic. But also $(CHIH')$ is cyclic by claim 1. Hence we have that there exists a spiral similirity at $C$ such that $\overline{HI} \mapsto \overline{XD}$ $\implies$ $\triangle {XCD} \sim \triangle {HCI}$ $\implies$ $$\angle XCD=\angle HCI=\angle ACO$$and as we also know that $\angle DAX=\angle OAC$ so we can directly conclude that $(X,O)$ are isogonal conjugates w.r.t $\triangle {ADC}$ . So we may have that $$\angle EFB=\angle XFB+\angle XFE=\angle ADX+\angle XCE=\angle EDC+\angle OCD=\angle DCB+\angle OCD=\angle OCB=\angle OBC=\angle DOB$$. Hence we have that $(OEFB)$ is cyclic. Similiarly conclude that $(ODCF)$ is cyclic. Now we state a lemma which finishes the problem.

Lemma: If $\odot(OEB)\cap \odot(OCD)=F$ then $O \in \overline{AF}$.

Proof: Observe that $$\angle EFB=\angle DOB=\angle EOC=\angle DFC$$. So we have that $(\overline{FD},\overline{FE})$ are isogonal w.r.t $\angle BFC$. Now applying the isogonal line lemma to $(\overline{FD},\overline{FE})$ w.r.t $\angle BFC$ we have that if $G=\overline{CD}\cap \overline{BE}$ then $(\overline{FG},\overline{FA})$ are isogonal. But notice that $$\angle BFC=\angle OFB+\angle OFC=\angle EBC+\angle DCB=180^\circ -\angle BGC$$. So we have that $(BGCF)$ is cyclic. Now just notice that $$\angle GFC=\angle GBC=\angle EBC=\angle OEB=\angle OFB$$with which we have that $(\overline{FG},\overline{FO})$ are isogonal w.r.t $\angle BFC$ . Now earlier we already had $(\overline{FG},\overline{FA})$ are isogonal with which we are done. $\blacksquare$.
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(12cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -28.744810636388543, xmax = 38.626461199971594, ymin = -25.087300536119866, ymax = 19.403987423346614;  /* image dimensions */
pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); 
 /* draw figures */
draw((-4.7801760376472116,13.950725144137508)--(-7.56,-2.28), linewidth(0.8)); 
draw((-7.56,-2.28)--(8,-2.26), linewidth(0.8)); 
draw((8,-2.26)--(-4.7801760376472116,13.950725144137508), linewidth(0.8)); 
draw(circle((0.21098652855647296,4.742480783064175), 10.473942332069228), linewidth(0.8)); 
draw((-4.7801760376472116,13.950725144137508)--(-4.762149094760157,-0.0742364219908404), linewidth(0.4) + wrwrwr); 
draw(circle((3.266103826671193,-0.5242884546801765), 10.96754517183467), linewidth(0.8)); 
draw(circle((-4.974307769629735,-6.808894958451459), 13.748640203456471), linewidth(0.8)); 
draw((-4.7801760376472116,13.950725144137508)--(8.336947610659198,-10.249183848185663), linewidth(1.2) + linetype("4 4")); 
draw(circle((1.3557146108993223,-4.335137577706486), 9.149511325000091), linewidth(0.4) + linetype("4 4")); 
draw((-4.771162566203684,6.938244361073334)--(8.336947610659198,-10.249183848185663), linewidth(0.4)); 
draw((8.336947610659198,-10.249183848185663)--(-7.56,-2.28), linewidth(0.4)); 
draw((2.477103169504549,4.745393529389301)--(8.336947610659198,-10.249183848185663), linewidth(0.4)); 
draw((-4.771162566203684,6.938244361073334)--(-6.3587113083741285,4.734036441371462), linewidth(0.4) + wrwrwr); 
draw((-4.771162566203684,6.938244361073334)--(8,-2.26), linewidth(0.4)); 
draw((0.21098652855647299,4.742480783064174)--(8,-2.26), linewidth(0.4)); 
draw((-4.771162566203684,6.938244361073334)--(2.477103169504549,4.745393529389301), linewidth(0.4)); 
draw(circle((-3.068492691278137,0.5606330775406088), 5.314398760492078), linewidth(0.4)); 
draw((-4.762149094760157,-0.0742364219908404)--(-4.7564880054789525,-4.478563882765253), linewidth(0.4) + wrwrwr); 
draw((-6.3587113083741285,4.734036441371462)--(-4.7564880054789525,-4.478563882765253), linewidth(0.4)); 
draw((-7.56,-2.28)--(-4.7564880054789525,-4.478563882765253), linewidth(0.4) + wrwrwr); 
draw((-5.1393956738612,-2.276888683385425)--(-4.762149094760157,-0.0742364219908404), linewidth(0.4) + wrwrwr); 
draw((-4.762149094760157,-0.0742364219908404)--(-7.56,-2.28), linewidth(0.4)); 
draw((8,-2.26)--(-4.7564880054789525,-4.478563882765253), linewidth(0.4) + wrwrwr); 
draw((-4.762149094760157,-0.0742364219908404)--(8,-2.26), linewidth(0.4)); 
draw((-6.3587113083741285,4.734036441371462)--(8,-2.26), linewidth(0.4)); 
draw(circle((-3.059124112539502,-6.728121181117919), 11.927628977533937), linewidth(0.4) + linetype("4 4")); 
draw((-6.3587113083741285,4.734036441371462)--(8.336947610659198,-10.249183848185663), linewidth(0.4)); 
draw((8.336947610659198,-10.249183848185663)--(8,-2.26), linewidth(0.4)); 
draw((-7.56,-2.28)--(2.477103169504549,4.745393529389301), linewidth(0.4)); 
draw(circle((0.2255521701851131,-6.5895884040177295), 8.898728830946485), linewidth(0.4)); 
 /* dots and labels */
dot((-4.7801760376472116,13.950725144137508),dotstyle); 
label("$A$", (-4.596146965173741,14.373015825176855), NE * labelscalefactor); 
dot((-7.56,-2.28),dotstyle); 
label("$B$", (-7.395992028502993,-1.8573360263099332), NE * labelscalefactor); 
dot((8,-2.26),dotstyle); 
label("$C$", (8.178146136265973,-1.8135884471954136), NE * labelscalefactor); 
dot((0.21098652855647299,4.742480783064174),linewidth(4pt) + dotstyle); 
label("$O$", (0.3910770538814897,5.09852905289869), NE * labelscalefactor); 
dot((-4.762149094760157,-0.0742364219908404),linewidth(4pt) + dotstyle); 
label("$H$", (-4.596146965173741,0.28629535030152936), NE * labelscalefactor); 
dot((-4.771162566203684,6.938244361073334),linewidth(4pt) + dotstyle); 
label("$X$", (-4.596146965173741,7.285908008624673), NE * labelscalefactor); 
dot((-6.3587113083741285,4.734036441371462),linewidth(4pt) + dotstyle); 
label("$D$", (-6.171059813296446,5.09852905289869), NE * labelscalefactor); 
dot((2.477103169504549,4.745393529389301),linewidth(4pt) + dotstyle); 
label("$E$", (2.665951167836507,5.09852905289869), NE * labelscalefactor); 
dot((8.336947610659198,-10.249183848185663),linewidth(4pt) + dotstyle); 
label("$F$", (8.52812676918213,-9.906890583381548), NE * labelscalefactor); 
dot((-4.7564880054789525,-4.478563882765253),linewidth(4pt) + dotstyle); 
label("$H'$", (-4.596146965173741,-4.132210140264955), NE * labelscalefactor); 
dot((-5.1393956738612,-2.276888683385425),linewidth(4pt) + dotstyle); 
label("$I$", (-4.946127598089897,-1.9448311845389725), NE * labelscalefactor); 
dot((-1.1581917939609276,2.200896647923807),linewidth(4pt) + dotstyle); 
label("$G$", (-0.965097898668617,2.561169464256551), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Rg230403
222 posts
#17 • 1 Y
Y by p_square
Claim 1.$\angle BXD=\angle CXE$

We present two proofs of this claim but before that let's see how this claim finishes.
Perform $\sqrt{AB\cdot AE}$ inversion with center $A$ and reflect across the angle bisector of $\angle BAC$. Observe that this transformation maps $B$ to $E$ and $C$ to $F$. Let $X$ go to a point $X'$ under the inversion. Now, note that $X'$ lies on $AO$ as $AO$ and $AH$ are isogonal. Also, $\angle CXE=\angle BXD=\angle BXA-\angle DXA=\angle AEX'-\angle ACX'=\angle EX'C$. Thus, $CEXX'$ are cyclic. Similarly, $BDXX'$ are collinear and we get the desired result.
Now, we prove claim 1.
Let $D',E'$ be the feet of perpendiculars from $D,E$ respectively to $BC$ and let $H$ be the orthocenter and $T$ be the foot of perpendicular from $A$ to $BC$.

Remember that $AX=DD'=EE'=XH$ so $EE'AX, DD'AX, EE'XH, DD'XH$ are all parallelograms.

Proof 1(by p_square):
We claim that $H$ is the orthocenter of $E'XC'$.
Proof: We have that $CH\perp AB=AE\parallel XE'\implies E'X\perp CH$ and we have $XH\perp CE'$. Thus, we get that $EX\parallel E'H\perp XC\implies \angle EXC=90$. Similarly, $\angle BXD=90\implies \angle BXD=\angle CXE$.
Proof 2(Mine):Now, let $U$ be a point on $AH$ such that $\frac{TA}{TX}=\frac{TU}{TH}$.
$\angle DXB=\angle DXT-\angle BXT=\angle D'HT-\angle BXT=\angle BUT-\angle BXT=\angle XBU$. Similarly, we have $\angle CXE=\angle XCU$. Thus, we want $\angle XBU\angle XCU$. Let the reflection of $B$ in $T$ be $B'$. Now, $TX\cdot TU=TA\cdot TH=BT\cdot TC=TB'\cdot TC$. Thus, we have that $XUB'C$ is cyclic. So, $\angle BXD=\angle XBU=\angle XB'U=XCU=\angle CXE$ and thus, we are done.
This post has been edited 1 time. Last edited by Rg230403, Feb 10, 2021, 7:12 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TheUltimate123
1740 posts
#18 • 2 Y
Y by tapir1729, math_comb01
Very cool. The key idea is that the problem inverts to itself with the two intersections of \((BDX)\) and \((CEX)\) swapped. First, a claim:

Claim: \(\angle BXE=\angle CXD=90^\circ\).
Proof

[asy] size(6cm); defaultpen(fontsize(10pt)); pair A,B,C,H,O,D,EE,X,Y; A=dir(110); B=dir(220); C=dir(320); H=A+B+C; O=origin; D=extension(A,B,O,O+C-B); EE=extension(A,C,O,O+C-B); X=(A+H)/2; Y=reflect(circumcenter(B,D,X),circumcenter(C,EE,X))*X;

draw(A--H); draw(A--Y,dashed); draw(circumcircle(B,D,X),gray); draw(circumcircle(C,EE,X),gray); draw(unitcircle); draw(D--EE); draw(A--B--C--cycle,linewidth(1));

dot("\(A\)",A,A); dot("\(B\)",B,dir(210)); dot("\(C\)",C,dir(-30)); dot("\(H\)",H,S); dot("\(O\)",O,SW); dot("\(D\)",D,W); dot("\(E\)",EE,NE); dot("\(X\)",X,dir(305)); dot("\(Y\)",Y,dir(300));     [/asy]

From the claim, we deduce \(\measuredangle BXD=\measuredangle EXC\). Denote by \(\Psi\) inversion at \(A\) with radius \(\sqrt{AB\cdot AE}=\sqrt{AC\cdot AD}\) followed by reflection over the bisector of \(\angle BAC\), so \(\Psi\) swaps \((B,E)\) and \((C,D)\).

Let \(Y=\Psi(X)\) lie on \(\overline{AO}\). Then \[\measuredangle BYD=\measuredangle BYA+\measuredangle AYD=\measuredangle XEA+\measuredangle ACX=\measuredangle EXC=\measuredangle BXD\]so \(Y\) lies on \((BDX)\). Similarly \(Y\) lies on \((CEX)\), so \(Y\) is the desired intersection.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Idio-logy
206 posts
#19
Y by
This is routine with complex numbers once you guess the intersection (which is not easy).

Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MathLuis
1527 posts
#20
Y by
Let $AH,BH,CH$ hit $BC,AC,AB$ at $A_1,B_1,C_1$, now let $AH$ hit $(ABC)$ again at $H_A$ now by PoP we have that $XH \cdot HA_1=AH\cdot HA_1=BH \cdot HB_1=CH \cdot HC_1$ so $XBH_AB_1, XCH_AC_1$ are cyclic. Now consider an inversion with reflection that sends $D$ to $C$ and $B$ to $E$, this gives that $O,H_A$ are inverses so $DBH_AO, ECH_AO$ are cyclic and by angle chase.
$$\angle BH_AD=\angle BOD=\angle OBC=90-\angle BAC=\angle OCB=\angle EOC=\angle CH_AE$$Now note that $H_A,A$ are symetric w.r.t $DE$ so $\angle BAC=\angle DH_AE$ so $\angle BH_AE=\angle CH_AD=90$ and that means $CH_AC_1DX, BH_AEB_1X$ are cyclic so $\angle BXE=90=\angle CXD$ so $\angle BXD=\angle CXE$ and since $DE \parallel BC$ we get $(DXE), (BXC)$ tangent and also inverting gives $(DOC) \cap (BOE)=X'$ and $(DX'E), (BX'D)$ are tangent at $X'$ and $A,O,X'$ colinear and $\triangle BDX \sim \triangle ECX'$ so now $\angle DXB=\angle EX'C=\angle DX'B$ hence $DBX'X$ is cyclic but inverting gives $CEXX'$ cyclic so $(BDX),(CEX)$ meet at $X'$ which lies in $AO$ thus we are done :D

Note: I wrote this at the hospital with one hand because yesterday i had finger surgery, it went good so i still alive lol.
This post has been edited 3 times. Last edited by MathLuis, May 24, 2024, 2:52 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
CT17
1481 posts
#21
Y by
Claim: $\angle BXE = \angle CXD = 90^\circ$.

Proof: Let $P$ be the foot from $E$ to $BC$, so that $AXPE$ is a parallelogram. Let $Q$ be the reflection of $C$ over $P$, so that $HQ\parallel AC$. Let $R$ be the reflection of $Q$ over $E$, so that $AHCR$ is a parallelogram. Since $AR\parallel HC\perp AB$ and $CR\perp CB$, $R$ is actually the antipode of $B$ in $(ABC)$. Then we have $\angle QBR = 90^\circ - \angle A = \angle HBA$ and $\angle BQR = 180^\circ - \angle C = \angle BHA$, so $\triangle BQR\sim\triangle BHA$. Hence, we also have $\triangle BQE\sim\triangle BHX$, inducing the second spiral similarity $\triangle BHQ\sim\triangle BXE$, so $\angle BXE = \angle BHQ = 90^\circ$ as desired, and $\angle CXD = 90^\circ$ follows by symmetry.

Note that the claim implies $\angle DXB = \angle CXE$. Now, if $T$ is the point on $AO$ satisfying $\triangle CAX\sim\triangle BAT$, we have $\angle BTD = \angle CXE = \angle BXD$, so $T$ lies on $(BDX)$. Hence by PoP, the other intersection $T'$ of $(BXD)$ with $AO$ satisfies

$$AT' = \frac{AB\cdot AD}{AT} = \frac{AB\cdot AD}{AX\cdot \frac{AB}{AC}} = \frac{AD\cdot AC}{AX} = \frac{\sqrt{AB\cdot AC\cdot AD\cdot AE}}{AX}$$
which is symmetric in $B$ and $C$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
math_comb01
662 posts
#22
Y by
Very Nice Problem!
[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(15 cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -3.582269769522469, xmax =9.3495599740257218, ymin = -6.750263899423706, ymax = 4.296190961229847;  /* image dimensions */
pen zzttff = rgb(0.6,0.2,1); pen ffvvqq = rgb(1,0.3333333333333333,0); pen ccqqqq = rgb(0.8,0,0); pen ttffqq = rgb(0.2,1,0); pen fuqqzz = rgb(0.9568627450980393,0,0.6); 

draw((-0.9162004708649716,4.002019967362306)--(-1.54,-2.25)--(6.4,-1.69)--cycle, linewidth(0.4) + zzttff); 
 /* draw figures */
draw((-0.9162004708649716,4.002019967362306)--(-1.54,-2.25), linewidth(0.4) + zzttff); 
draw((-1.54,-2.25)--(6.4,-1.69), linewidth(0.4) + zzttff); 
draw((6.4,-1.69)--(-0.9162004708649716,4.002019967362306), linewidth(0.4) + zzttff); 
draw(circle((2.2537760815942054,0.5286034145393064), 4.702485926886521), linewidth(0.8) + ffvvqq); 
draw((xmin, 0.07052896725440806*xmin + 0.3696469150817805)--(xmax, 0.07052896725440806*xmax + 0.3696469150817805), linewidth(0.4)); /* line */
draw(circle((4.501891557302407,-1.575832419914503), 6.079387758338865), linewidth(0.4) + blue); 
draw(circle((-0.4654900211539337,-7.461514690475687), 8.969132346717876), linewidth(0.4) + ccqqqq); 
draw((-0.9162004708649716,4.002019967362306)--(8.418109611952028,-6.225799265460478), linewidth(0.4)); 
draw((-0.7399765524591768,1.503416552822999)--(2.2537760815942054,0.5286034145393064), linewidth(0.4)); 
draw((-0.5637526340533822,-0.9951868617163078)--(8.418109611952028,-6.225799265460478), linewidth(0.4)); 
draw((2.2537760815942054,0.5286034145393064)--(2.43,-1.97), linewidth(0.4)); 
draw((-0.5637526340533822,-0.9951868617163078)--(5.423752634053378,-2.9448131382836977), linewidth(0.4)); 
draw(circle((3.2243161541048657,-4.775751493570609), 5.392414025604744), linewidth(0.4) + ttffqq); 
draw(circle((0.9920346646962718,-6.8130193744306435), 7.449256109078176), linewidth(0.4) + ttffqq); 
draw(circle((0.8450117237704114,-0.23329172358850042), 2.35124296344326), linewidth(0.4) + fuqqzz); 
draw((-1.54,-2.25)--(3.4407305698579895,0.6123180887745355), linewidth(0.4)); 
draw((-1.2876844867144508,0.2788278580842878)--(6.4,-1.69), linewidth(0.4)); 
draw((-1.54,-2.25)--(8.418109611952028,-6.225799265460478), linewidth(0.4)); 
draw((8.418109611952028,-6.225799265460478)--(6.4,-1.69), linewidth(0.4)); 
draw((8.418109611952028,-6.225799265460478)--(3.4407305698579895,0.6123180887745355), linewidth(0.4)); 
draw((8.418109611952028,-6.225799265460478)--(-1.2876844867144508,0.2788278580842878), linewidth(0.4)); 
draw((-0.7399765524591768,1.503416552822999)--(8.418109611952028,-6.225799265460478), linewidth(0.4)); 
draw(circle((3.103865690898049,0.5190026237808545), 3.9678954088420353), linewidth(0.4) + linetype("4 4") + blue); 
draw(circle((-3.230341837388172,0.0722575084357314), 2.8723049042034083), linewidth(0.4) + linetype("4 4") + ccqqqq); 
draw((xmin, -14.178571428571441*xmin-8.98839385168748)--(xmax, -14.178571428571441*xmax-8.98839385168748), linewidth(0.4)); /* line */
draw((xmin, 1.2853434304193623*xmin-0.27057111715418225)--(xmax, 1.2853434304193623*xmax-0.27057111715418225), linewidth(0.4)); /* line */
draw(circle((0.9503652849289946,-0.818840955612733), 2.872304904203409), linewidth(0.4) + blue); 
 /* dots and labels */
dot((-0.9162004708649716,4.002019967362306),dotstyle); 
label("$A$", (-0.8552137275571697,3.913076919819897), NE * labelscalefactor); 
dot((-1.54,-2.25),dotstyle); 
label("$B$", (-1.477774044848339,-2.0890430622693166), NE * labelscalefactor); 
dot((6.4,-1.69),dotstyle); 
label("$C$", (6.455879229349382,-1.5303350852131397), NE * labelscalefactor); 
dot((2.2537760815942054,0.5286034145393064),linewidth(4pt) + dotstyle); 
label("$O$", (2.321440199133668,0.6566075678353237), NE * labelscalefactor); 
dot((-0.5637526340533822,-0.9951868617163078),linewidth(4pt) + dotstyle); 
label("$H$", (-0.5040258562647153,-0.8598855127457276), NE * labelscalefactor); 
dot((-1.2876844867144508,0.2788278580842878),linewidth(4pt) + dotstyle); 
label("$D$", (-1.2223646839083722,0.4011982068953572), NE * labelscalefactor); 
dot((3.4407305698579895,0.6123180887745355),linewidth(4pt) + dotstyle); 
label("$E$", (3.502708493481015,0.7364229931290632), NE * labelscalefactor); 
dot((-0.7399765524591768,1.503416552822999),linewidth(4pt) + dotstyle); 
label("$X$", (-0.6796197919109425,1.6303557564189461), NE * labelscalefactor); 
dot((8.418109611952028,-6.225799265460478),linewidth(4pt) + dotstyle); 
label("$F$", (8.48319103181037,-6.095777412015042), NE * labelscalefactor); 
dot((5.423752634053378,-2.9448131382836977),linewidth(4pt) + dotstyle); 
label("$A'$", (5.482131040765758,-2.8233449749717203), NE * labelscalefactor); 
dot((2.43,-1.97),linewidth(4pt) + dotstyle); 
label("$M$", (2.4970341347798954,-1.8495967863880978), NE * labelscalefactor); 
dot((-1.228100235432486,0.8760099836811528),linewidth(4pt) + dotstyle); 
label("$P$", (-1.1585123436733804,1.0077954391277777), NE * labelscalefactor); 
dot((2.7418997645675143,1.1560099836811528),linewidth(4pt) + dotstyle); 
label("$N$", (2.800332750896106,1.279167885126492), NE * labelscalefactor); 
dot((1.5817007453631895,-0.4560261269164034),linewidth(4pt) + dotstyle); 
label("$J$", (1.650990626666255,-0.33310370580704657), NE * labelscalefactor); 
dot((-0.0448438436610229,-8.352572211207967),dotstyle); 
label("$A'_{1}$", (-8.182269769522469,4.296190961229847), NE * labelscalefactor); 
dot((-0.397291680472613,-3.3553653821293556),linewidth(4pt) + dotstyle); 
label("$K$", (-0.3284319206184881,-3.2224221014404177), NE * labelscalefactor); 
dot((1.725249073262489,1.9469664450008537),linewidth(4pt) + dotstyle); 
label("$L$", (1.7946583921949864,2.0773221380638875), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */ [/asy]
We first give 2 solutions
Solution 1:
Let $K$ be the reflection of orthocenter in $BC$, and Let $BL \perp AC$, Let $F$ be the intersection of the circles.
Claim 1: $\measuredangle BXE = \measuredangle CXD = 90^\circ$
Proof
Now just invert at $A$ with radius $\sqrt{AB \cdot AE}$, then do some angle chasing to get the inverse of $X$ is $F$. Hence we're done.
$\quad$
$\quad$
Solution 2:
Let $(COD)$ and $(BOE)$ intersect at $F'$, $(FBD),(FCE)$ intersect at $X'$
Claim: $FA,FD$ are isogonal in $BFC$
Claim 2 $A-O-F$
CLaim 3 $FO$ and $FJ$ are isogonal where $J = BE \cap CD$
Claim 4: $F-J-X$
Claim 5: $AX \perp BC$
ALL the proofs of claims are angle chase or DDIT.
Hence we're done
Fact: While playing around with this problem, I found out that under $\sqrt{XB \cdot XC}$ inversion $H$ and $F$ are interchanged. I will be interested in any solution using that.
Remark
This post has been edited 2 times. Last edited by math_comb01, Dec 25, 2023, 6:21 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bin_sherlo
729 posts
#23
Y by
Let $AH\cap (ABC)=F$ and $(BOE)\cap (COD)=P,(BOE)\cap (ABC)=Q,QC\cap AF=W$. Let $EF$ be the altitude from $E$ to $BC$. Let $C'$ be the antipode of $C$ on $(ABC)$. We will show that $P\in AO,O\in (CEX)$ and similarily $P\in (CDX)$.
Claim: $A,O,P$ are collinear.
Proof: If $D^*,E^*,P^*$ are the images of $D,E,P$ under the inversion around $(ABC)$, then $F,B,D^*$ and $F,C,E^*$ are collinear. DDIT at $P^*BFC$ gives $(\overline{AD^*},\overline{AE^*}),(\overline{AB},\overline{AC}),(\overline{AF},\overline{AP^*})$ is an involution which must be reflection over the angle bisector of $\measuredangle CAB$ thus, $P^*$ lies on $AO$.
Claim: $E,C,P,W$ are concyclic.
Proof: First notice that $\measuredangle BQE=90-\measuredangle A=\measuredangle BQC'$ hence $Q,E,C'$ are collinear and $\measuredangle CQE=90$.
\[\measuredangle APQ=\measuredangle OPQ=90-\measuredangle QAB=\measuredangle AWQ\]Thus, $A,W,Q,P$ are concyclic. Since $E$ lies on the perpendicular bisector of $BC'$, we have $EC'=EB$ and since $C'B\perp BC$ we observe $\measuredangle OBQ=180-\measuredangle QEO=\measuredangle (BC,EQ)=\measuredangle EBC$ so $\measuredangle OBE=\measuredangle QBC$.
\[\measuredangle WPE=\measuredangle WPO+\measuredangle OPE=\measuredangle WQA+\measuredangle OBE=180-\measuredangle B+\measuredangle QBC=180-\measuredangle ACQ\]Which proves the claim.
Claim: $X$ lies on $(ECPW)$.
Proof: Let $A'$ be the reflection of $A$ over $E$. Note that $\measuredangle AFA'=90$ and $VH=VF=VA'$. Since $E,V,C,Q$ lie on the circle with diameter $EC$, we get $\measuredangle FQC'=\measuredangle C=\measuredangle VQC'$ hence $F,V,Q$ are collinear. We have $\measuredangle BCQ=\measuredangle EVQ=90-\measuredangle VFA'=\measuredangle A'HF$ thus,
\[\measuredangle XEA=\measuredangle HA'A=\measuredangle C-\measuredangle FA'H=\measuredangle BCQ-90=\measuredangle AWC\]As desired.$\blacksquare$
Z K Y
N Quick Reply
G
H
=
a