Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Reflected point lies on radical axis
Mahdi_Mashayekhi   0
18 minutes ago
Source: Iran 2025 second round P4
Given is an acute and scalene triangle $ABC$ with with circumcenter $O$. $BO$ and $CO$ intersect the altitude from $A$ to $BC$ at points $P$ and $Q$ respectively. $X$ is the circumcenter of triangle $OPQ$ and $O'$ is the reflection of $O$ over $BC$. $Y$ is the second intersection of circumcircles of triangles $BXP$ and $CXQ$. Show that $X,Y,O'$ are collinear.
0 replies
Mahdi_Mashayekhi
18 minutes ago
0 replies
Similar triangles formed by angular condition
Mahdi_Mashayekhi   0
27 minutes ago
Source: Iran 2025 second round P3
Point $P$ lies inside of scalene triangle $ABC$ with incenter $I$ such that $:$
$$ 2\angle ABP = \angle BCA , 2\angle ACP = \angle CBA $$Lines $PB$ and $PC$ intersect line $AI$ respectively at $B'$ and $C'$. Line through $B'$ parallel to $AB$ intersects $BI$ at $X$ and line through $C'$ parallel to $AC$ intersects $CI$ at $Y$. Prove that triangles $PXY$ and $ABC$ are similar.
0 replies
Mahdi_Mashayekhi
27 minutes ago
0 replies
Same radius geo
ThatApollo777   1
N 38 minutes ago by CHESSR1DER
Source: Own
Classify all possible quadrupes of $4$ distinct points in a plane such the circumradius of any $3$ of them is the same.
1 reply
ThatApollo777
4 hours ago
CHESSR1DER
38 minutes ago
one cyclic formed by two cyclic
CrazyInMath   37
N an hour ago by G81928128
Source: EGMO 2025/3
Let $ABC$ be an acute triangle. Points $B, D, E$, and $C$ lie on a line in this order and satisfy $BD = DE = EC$. Let $M$ and $N$ be the midpoints of $AD$ and $AE$, respectively. Suppose triangle $ADE$ is acute, and let $H$ be its orthocentre. Points $P$ and $Q$ lie on lines $BM$ and $CN$, respectively, such that $D, H, M,$ and $P$ are concyclic and pairwise different, and $E, H, N,$ and $Q$ are concyclic and pairwise different. Prove that $P, Q, N,$ and $M$ are concyclic.
37 replies
CrazyInMath
Apr 13, 2025
G81928128
an hour ago
Iran second round 2025-q1
mohsen   0
an hour ago
Find all positive integers n>2 such that sum of n and any of its prime divisors is a perfect square.
0 replies
mohsen
an hour ago
0 replies
FE inequality from Iran
mojyla222   1
N an hour ago by bin_sherlo
Source: Iran 2025 second round P5
Find all functions $f:\mathbb{R}^+ \to \mathbb{R}$ such that for all $x,y,z>0$
$$
3(x^3+y^3+z^3)\geq f(x+y+z)\cdot f(xy+yz+xz) \geq (x+y+z)(xy+yz+xz).
$$
1 reply
mojyla222
2 hours ago
bin_sherlo
an hour ago
True or false?
Nguyenngoctu   3
N 2 hours ago by MathsII-enjoy
Let $a,b,c > 0$ such that $ab + bc + ca = 3$. Prove that ${a^3} + {b^3} + {c^3} \ge {a^3}{b^3} + {b^3}{c^3} + {c^3}{a^3}$
3 replies
Nguyenngoctu
Nov 17, 2017
MathsII-enjoy
2 hours ago
Advanced topics in Inequalities
va2010   10
N 2 hours ago by Novmath
So a while ago, I compiled some tricks on inequalities. You are welcome to post solutions below!
10 replies
va2010
Mar 7, 2015
Novmath
2 hours ago
Geometry Problem
Itoz   2
N 2 hours ago by Itoz
Source: Own
Given $\triangle ABC$. Let the perpendicular line from $A$ to $BC$ meets $BC,\odot(ABC)$ at points $S,K$, respectively, and the foot from $B$ to $AC$ is $L$. $\odot (AKL)$ intersects line $AB$ at $T(\neq A)$, $\odot(AST)$ intersects line $AC$ at $M(\neq A)$, and lines $TM,CK$ intersect at $N$.

Prove that $\odot(CNM)$ is tangent to $\odot (BST)$.
2 replies
1 viewing
Itoz
Yesterday at 11:49 AM
Itoz
2 hours ago
Why is the old one deleted?
EeEeRUT   11
N 2 hours ago by Mathgloggers
Source: EGMO 2025 P1
For a positive integer $N$, let $c_1 < c_2 < \cdots < c_m$ be all positive integers smaller than $N$ that are coprime to $N$. Find all $N \geqslant 3$ such that $$\gcd( N, c_i + c_{i+1}) \neq 1$$for all $1 \leqslant i \leqslant m-1$

Here $\gcd(a, b)$ is the largest positive integer that divides both $a$ and $b$. Integers $a$ and $b$ are coprime if $\gcd(a, b) = 1$.

Proposed by Paulius Aleknavičius, Lithuania
11 replies
EeEeRUT
Apr 16, 2025
Mathgloggers
2 hours ago
Congruence related perimeter
egxa   2
N 3 hours ago by LoloChen
Source: All Russian 2025 9.8 and 10.8
On the sides of triangle \( ABC \), points \( D_1, D_2, E_1, E_2, F_1, F_2 \) are chosen such that when going around the triangle, the points occur in the order \( A, F_1, F_2, B, D_1, D_2, C, E_1, E_2 \). It is given that
\[
AD_1 = AD_2 = BE_1 = BE_2 = CF_1 = CF_2.
\]Prove that the perimeters of the triangles formed by the triplets \( AD_1, BE_1, CF_1 \) and \( AD_2, BE_2, CF_2 \) are equal.
2 replies
egxa
Yesterday at 5:08 PM
LoloChen
3 hours ago
number theory
Levieee   7
N 3 hours ago by g0USinsane777
Idk where it went wrong, marks was deducted for this solution
$\textbf{Question}$
Show that for a fixed pair of distinct positive integers \( a \) and \( b \), there cannot exist infinitely many \( n \in \mathbb{Z} \) such that
\[
\sqrt{n + a} + \sqrt{n + b} \in \mathbb{Z}.
\]
$\textbf{Solution}$

Let
\[
x = \sqrt{n + a} + \sqrt{n + b} \in \mathbb{N}.
\]
Then,
\[
x^2 = (\sqrt{n + a} + \sqrt{n + b})^2 = (n + a) + (n + b) + 2\sqrt{(n + a)(n + b)}.
\]So:
\[
x^2 = 2n + a + b + 2\sqrt{(n + a)(n + b)}.
\]
Therefore,
\[
\sqrt{(n + a)(n + b)} \in \mathbb{N}.
\]
Let
\[
(n + a)(n + b) = k^2.
\]Assume \( n + a \neq n + b \). Then we have:
\[
n + a \mid k \quad \text{and} \quad k \mid n + b,
\]or it could also be that \( k \mid n + a \quad \text{and} \quad n + b \mid k \).

Without loss of generality, we take the first case:
\[
(n + a)k_1 = k \quad \text{and} \quad kk_2 = n + b.
\]
Thus,
\[
k_1 k_2 = \frac{n + b}{n + a}.
\]
Since \( k_1 k_2 \in \mathbb{N} \), we have:
\[
k_1 k_2 = 1 + \frac{b - a}{n + a}.
\]
For infinitely many \( n \), \( \frac{b - a}{n + a} \) must be an integer, which is not possible.

Therefore, there cannot be infinitely many such \( n \).
7 replies
Levieee
Yesterday at 7:46 PM
g0USinsane777
3 hours ago
inequalities proplem
Cobedangiu   4
N 3 hours ago by Mathzeus1024
$x,y\in R^+$ and $x+y-2\sqrt{x}-\sqrt{y}=0$. Find min A (and prove):
$A=\sqrt{\dfrac{5}{x+1}}+\dfrac{16}{5x^2y}$
4 replies
Cobedangiu
Yesterday at 11:01 AM
Mathzeus1024
3 hours ago
Geometry with parallel lines.
falantrng   32
N Mar 23, 2025 by endless_abyss
Source: RMM 2018,D1 P1
Let $ABCD$ be a cyclic quadrilateral an let $P$ be a point on the side $AB.$ The diagonals $AC$ meets the segments $DP$ at $Q.$ The line through $P$ parallel to $CD$ mmets the extension of the side $CB$ beyond $B$ at $K.$ The line through $Q$ parallel to $BD$ meets the extension of the side $CB$ beyond $B$ at $L.$ Prove that the circumcircles of the triangles $BKP$ and $CLQ$ are tangent .
32 replies
falantrng
Feb 24, 2018
endless_abyss
Mar 23, 2025
Geometry with parallel lines.
G H J
G H BBookmark kLocked kLocked NReply
Source: RMM 2018,D1 P1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
falantrng
250 posts
#1 • 8 Y
Y by microsoft_office_word, itslumi, k12byda5h, mathematicsy, harshmishra, Adventure10, Rounak_iitr, cubres
Let $ABCD$ be a cyclic quadrilateral an let $P$ be a point on the side $AB.$ The diagonals $AC$ meets the segments $DP$ at $Q.$ The line through $P$ parallel to $CD$ mmets the extension of the side $CB$ beyond $B$ at $K.$ The line through $Q$ parallel to $BD$ meets the extension of the side $CB$ beyond $B$ at $L.$ Prove that the circumcircles of the triangles $BKP$ and $CLQ$ are tangent .
This post has been edited 1 time. Last edited by falantrng, Feb 24, 2018, 12:11 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rmtf1111
698 posts
#2 • 5 Y
Y by microsoft_office_word, Euiseu, translate, Adventure10, cubres
Denote by $\omega$ the circumcircle of $ABCD$. Let $\{T\} = DQ \cap \omega$. By converse of Reim's Theorem on the parallel lines $PK \mid \mid CD$ and circle $\omega$ we have that $BDTK$ is cyclic. By converse of Reim's Theorem on the parallel lines $LQ \mid \mid BD$ and circle $\omega$ we have that $CQTL$ is cyclic. Now because $\angle{ACT}=\angle{ABT}$ we have that the lines tangent to the circumcircles of $QCT$ and $BDT$ at $T$ coincide, thus the circumcircles of the triangles $BKP$ and $CLQ$ are tangent at $T$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GGPiku
402 posts
#3 • 3 Y
Y by tbn456834678, Adventure10, cubres
Pretty easy problem compared to the ones from the last year. A bit too easy.
Let $DP$ intersect $(ABCD)$ in $D$ and $S$. We can easily observ that $S$ is on both circumcircles of $BKP$ and $CLQ$.
Indeed, $\angle PSB=180-\angle BCB=\angle PKB$, since $PK\parallel CD$, so $P,B,K,S$ are concyclic, and $\angle QSC=\angle DBC=\angle QLC$, so $Q,C,L,S$ are concyclic.
Now, for an easier explanation, if we let $d$ be the tangent in $S$ at $(BKP)$, and $R$ a point on $d$ such that $L,R$ are on opposite sides wrt $SB$, we'll have $\angle RSP=\angle ABS=\angle ACS=\angle QLS$, so $d$ is tangent in $S$ at $(CLQ)$. This concludes the tangency of $BKP$ and $CLQ$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
WizardMath
2487 posts
#4 • 3 Y
Y by Adventure10, Mango247, cubres
The intersection of $PD$ and $(ABCD)$ is $X$. $\measuredangle PKB = \measuredangle PXB$, so $PKBX, CQLX$ are cyclic. Now $XK, XB$ are isogonal in $XLC$ so we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
BarishNamazov
124 posts
#5 • 4 Y
Y by tenplusten, Adventure10, Mango247, cubres
Too easy.Let $T=DP\cap \odot (ABCD) $.Easy angle-chasing implies that $CLTQ$,$BKTP $ are cyclic.Again chasing some angles $\angle LTK=\angle BAC=\angle CTB$ which yields that $TK,TB $ are isogonals wrt $TLC $ which finishes problem.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
randomusername
1059 posts
#6 • 2 Y
Y by Adventure10, cubres
Letting $O=DP\cap BC$ (assuming it exists), then Power of a Point wrt secants $OD,OC$ shows that $(BKPT)$ and $(CLQT)$ are cyclic, where $T=(ABCD)\cap OD$. (Since the diagram varies continuously as $P$ varies continuously, this proves they are cyclic even if $DP$ and $BC$ are parallel.)

To show tangency, note that by angle chasing $PTK\sim ATC$ and $ATB\sim QTL$. Hence there exist spiral similarities $\phi,\psi$ centered at $T$ with $\phi(PTK)=ATC$ and $\psi(ATB)=QTL$. Then $\phi\circ \psi$ maps $P\to Q$, hence it's a homothety, and circles $(PTK)$ and $(QTL)$ are homothetic (with center $T$), as desired.
This post has been edited 1 time. Last edited by randomusername, Feb 24, 2018, 6:07 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
trumpeter
3332 posts
#7 • 2 Y
Y by Adventure10, cubres
Let $E=PD\cap\left(ABCD\right)$. Then \[\measuredangle{PEB}=\measuredangle{DEB}=\measuredangle{DCB}=\measuredangle{PKB},\]so $EPBK$ is cyclic. Similarly, $EQCL$ is cyclic.

Let $\ell_B,\ell_C$ be the tangents to $\left(EPBK\right),\left(EQCL\right)$ at $E$. Then \[\measuredangle{\left(\ell_B,ED\right)}=\measuredangle{EBP}=\measuredangle{EBA}=\measuredangle{ECA}=\measuredangle{ECQ}=\measuredangle{\left(\ell_C,ED\right)},\]so $\ell_B=\ell_C$ and hence $\left(BKP\right)$ and $\left(CLQ\right)$ are tangent.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
djmathman
7938 posts
#8 • 3 Y
Y by Adventure10, Mango247, cubres
asdf took way too long (and Geogebra help) for me to realize that phantom pointing basically kills this problem; time to draw better diagrams I guess :oops:

Let $X = PQD\cap\odot(ABCD)$. Note that \[\angle PXB \equiv\angle DXB = \angle DAB = \angle PKB,\]so $PBKX$ is cyclic. Similarly, $QCLX$ is cyclic. We can thus get rid of $K$ and $L$, since it suffices to show that the circles $\odot(BPX)$ and $\odot(CQX)$ are tangent to each other. But upon letting $O_B$ and $O_C$ be their respective centers, we obtain \[\angle O_BXP = 90^\circ - \angle XBP = 90^\circ - \angle XCQ = O_CXQ,\]so $X$, $O_B$, and $O_C$ are collinear, implying the tangency. $\blacksquare$
This post has been edited 2 times. Last edited by djmathman, Mar 17, 2018, 11:40 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Kala_Para_Na
28 posts
#9 • 3 Y
Y by Adventure10, Mango247, cubres
$PD \cap \odot ABCD = \{ D,X \}$
By Reim's theorem, $X \in \odot BKP$ and $X \in \odot QLC$
Angle chasing yields, $\angle AXC = \angle PXK$ and $\angle AXB = \angle QXL$ which implies $K$ and $B$ are isogonal in $\triangle XLC$
it leads us to our conclusion.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Kagebaka
3001 posts
#10 • 3 Y
Y by AlastorMoody, Adventure10, cubres
huh no inversion?

Solution

also @post 2 I think you meant $BPTK$ cyclic not $BDTK$ cyclic
This post has been edited 1 time. Last edited by Kagebaka, Jul 7, 2019, 1:18 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IndoMathXdZ
691 posts
#11 • 2 Y
Y by Adventure10, cubres
Nice Problem :) Here is a boring solution.
Denote the intersection of $PQ$ with $(ABCD)$ as $G$, other than $D$.
We claim that the tangency point is $G$.

Claim 01. $G$ lies on both $(BKP)$ and $(CLQ)$. In other words, $BKGP$ and $CLGQ$ are both cyclic.
Proof. Notice that \[ \measuredangle BKP = \measuredangle BCD = \measuredangle BAD = \measuredangle BGD \equiv \measuredangle BGP\]Similarly,
\[ \measuredangle LQG = \measuredangle BDG = \measuredangle BCG \equiv \measuredangle LCG \]
Claim 02. Let $GK$ intersects $(CQL)$ at $H$. Then , $HQ \parallel PK$.
Proof. We'll prove this by phantom point. Notice that
\[ \measuredangle GHQ = \measuredangle GKP = \measuredangle GBP = \measuredangle GBA = \measuredangle GCA = \measuredangle GCQ \]which is what we wanted.
Therefore, $G$ sends $KP$ to $HQ$, which makes $G$ the tangency point of the two circle.
This post has been edited 1 time. Last edited by IndoMathXdZ, Nov 16, 2019, 7:36 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AlastorMoody
2125 posts
#12 • 4 Y
Y by a_simple_guy, Adventure10, Mango247, cubres
Solution (with PUjnk)
This post has been edited 2 times. Last edited by AlastorMoody, Dec 13, 2019, 7:41 PM
Reason: Give credit to poor PUjnk's soul... lol
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
amar_04
1915 posts
#13 • 5 Y
Y by mueller.25, GeoMetrix, BinomialMoriarty, Bumblebee60, cubres
Storage.
RMM 2018 Day 1 P1 wrote:
Let $ABCD$ be a cyclic quadrilateral an let $P$ be a point on the side $AB.$ The diagonals $AC$ meets the segments $DP$ at $Q.$ The line through $P$ parallel to $CD$ mmets the extension of the side $CB$ beyond $B$ at $K.$ The line through $Q$ parallel to $BD$ meets the extension of the side $CB$ beyond $B$ at $L.$ Prove that the circumcircles of the triangles $BKP$ and $CLQ$ are tangent .

Let $DP\cap\odot(ABC)=X$. Then $\angle KPX=\angle CDX=\angle XBK\implies X,K,B,P$ are concyclic. And $\angle XQL=\angle XDB=\angle XCL\implies L,C,Q,X$ are concyclic, Now $$\angle LXK=\angle LXQ-\angle KXP=(180^\circ-\angle BCA)-(180^\circ-\angle ABL)=\angle ABL-\angle BCA=\angle BAC=\angle BXC$$So, $\{XK,XB\}$ are isogonal WRT $\triangle LXC\implies\odot(BKP)$ and $\odot(CLQ)$ are tangent to each other at $X$. $\blacksquare$
This post has been edited 4 times. Last edited by amar_04, Mar 14, 2020, 9:16 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
itslumi
284 posts
#14 • 1 Y
Y by cubres
1)Let $(CLQ)n(ABCD)=X$ ,prove that $(BPXK)$-cyclic and $(BPXK)$ tangent to $(CLQ)$.

2)Prove that $X-Q-D$ collnear
$\angle CLQ=\angle CXQ$
but
$\angle CXD=\angle CAD$,which implies that $\angle CXD=\angle CXQ$,which implies the desired collinearity

3)Prove that $(BKXP)-cyclic$

$\angle DCY=\angle DAB=\angle BKP$
and
its obvious that $\angle BXP=\angle BAD$,which implies the desired claim

4)Let $\ell$ be a line that passes through $X$ and tangent to $(CQL)$.Prove that $\ell$ is tangent to $(KBPX)$ at $X$.
$\angle QLX=\angle QX=\angle QCX=\angle ACX=\angle ABX=\angle PKX$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
554183
484 posts
#15 • 1 Y
Y by cubres
:D
Let $PQ \cap \odot{ABCD}=E$. I claim that $E$ is the point of tangency.
First I will prove that $EQCL$ is cyclic
$$\angle{QLC}=\angle{DBC}=\angle{DEC}$$Similarly,
$$\angle{BKP}=180-\angle{DCB}=180-(180-\angle{DEB})=\angle{DEB}$$Hence $EPBK$ is cyclic.
To finish, we present the following claim :
Claim : $\angle{PBE}=\angle{QLE}$
Proof. $$\angle{QLE}=\angle{QCE}=\angle{ABE}=\angle{PBE}$$Now, draw a tangent to $\odot{BKP}$ at $E$. Let $G$ be an arbitrary point on the tangent inside $\odot{ABC}$. We see that
$$\angle{GEQ}=\angle{GEP}=\angle{EBP}=\angle{ELQ}$$So we are done $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
BVKRB-
322 posts
#16 • 1 Y
Y by cubres
Nice diagram = Problem done! :D (And this time it's on paper!)

Let $\odot(ABC) \cap \odot(LQC) = X$
We claim that $X$ is the desired tangency point

Claim: $D-Q-P-F$ are collinear
Proof

Hence One of $\odot(CLQ) \cap \odot(BKP)=X$

Now draw the line that is tangent to $\odot(LQC)$ at $T$ and name it $\ell$ and let a point on $\ell$ on the same side of $F$ as $L$ be $Y$
We know that $$\angle YFL= \angle  XCL = \angle XQL = \angle  XDB$$and after some easy angle chasing we get $\angle  XPK = \angle  XDC = \angle  YXL + \angle  CXB$ Therefore it suffices to show that $XK,XB$ are isogonal in $\triangle XLC$
This is true after some angle chasing which I am too lazy to write, just assume variables and calculate each angle, which finally gives the desired conclusion $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
HoRI_DA_GRe8
597 posts
#17 • 1 Y
Y by cubres
solution
This post has been edited 1 time. Last edited by HoRI_DA_GRe8, Nov 22, 2021, 6:24 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
REYNA_MAIN
41 posts
#18 • 2 Y
Y by BVKRB-, cubres
Shortage
Just orsing BVKRB
HELP?
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
UI_MathZ_25
116 posts
#19 • 1 Y
Y by cubres
The line $DP$ meets the circumcircle of triangle $CLQ$ at $R$. We get

$\angle RDB = \angle RQL = \angle RCL = \angle RCB \Rightarrow$ $R$ lie on $\odot(ABCD)$.

Since $PK \parallel CD$, by the Reim's Theorem we get that $RBKP$ is cyclic.

Finally, let $X$ be the intersection of the tangent to $\odot(CLQ)$ at $R$ with the line $CD$. Thus

$\angle XRQ = \angle RCQ = \angle RCA = \angle RBA = \angle RBP \Rightarrow$ $XR$ is tangent to$\odot (RBP)$.

Therefore, the circumcircles of the triangles $BKP$ and $CLQ$ are tangent to the line $XR$ at $R$ $\blacksquare$
Attachments:
This post has been edited 1 time. Last edited by UI_MathZ_25, Dec 23, 2021, 11:03 PM
Reason: Figure
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mahdi_Mashayekhi
692 posts
#20 • 1 Y
Y by cubres
Let $DQ$ meet $ABCD$ at $S$.
$\angle QLC = \angle DBC = \angle QSC \implies SLCQ$ is cyclic. $\angle BKP = \angle 180 - \angle BCD = \angle BSP \implies BKSP$ is cyclic. Let $L_1$ be line tangent to $SLCQ$ at $S$ we have $\angle SCQ = \angle SCA = \angle SBA = \angle SBP \implies L_1$ is tangent to $BKSP$ as well so our circles are tangent at $S$.
we're Done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SatisfiedMagma
458 posts
#21 • 2 Y
Y by Rounak_iitr, cubres
Let $E= DQ \cap \odot(ABCD) \ne D$. We will prove that $E$ is the common point of tangency.

[asy]
            import graph; size(12cm);
            real labelscalefactor = 0.5; /* changes label-to-point distance */
            pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
            pen dotstyle = black; /* point style */
            real xmin = 1.9, xmax = 11.2, ymin = -2.5862804185721906, ymax = 5.031020679728067;  /* image dimensions */
            pen cqcqcq = rgb(0.7529411764705882,0.7529411764705882,0.7529411764705882);
            /* draw figures */
            draw(circle((5.852809635608784,1.367535756966066), 3.5453838571445635), linewidth(0.8) + blue);
            draw((3.741438563859456,4.215668284058398)--(9.,3.), linewidth(0.8) + green);
            draw((9.,3.)--(6.68,-2.08), linewidth(0.8) + green);
            draw((6.68,-2.08)--(2.373492429373072,0.6862880245710273), linewidth(0.8) + green);
            draw((3.741438563859456,4.215668284058398)--(2.373492429373072,0.6862880245710273), linewidth(0.8) + green);
            draw((9.,3.)--(2.373492429373072,0.6862880245710273), linewidth(0.8) + green);
            draw(circle((8.003294213009466,3.084537618648431), 1.0002844769300214), linewidth(0.8) + red);
            draw((9.,3.)--(9.306489730729668,3.6711068241839295), linewidth(0.8) + green);
            draw((9.306489730729668,3.6711068241839295)--(4.739858471858444,2.07662144581455), linewidth(0.8) + green);
            draw((8.719877477199834,2.3866282690410148)--(7.070615206872309,3.4460329938583647), linewidth(0.8) + green);
            draw((4.739858471858444,2.07662144581455)--(8.141511444765205,4.075226788687628), linewidth(0.8) + green);
            draw((8.141511444765205,4.075226788687628)--(9.,3.), linewidth(0.8) + green);
            draw((2.373492429373072,0.6862880245710273)--(4.739858471858444,2.07662144581455), linewidth(0.8) + green);
            draw(circle((7.702470722917133,0.9283479023436838), 3.1773579402953915), linewidth(0.8) + red);
            draw((3.741438563859456,4.215668284058398)--(6.68,-2.08), linewidth(0.8) + green);
            draw((8.141511444765205,4.075226788687628)--(6.68,-2.08), linewidth(0.8) + green);
            /* dots and labels */
            dot((3.741438563859456,4.215668284058398),dotstyle);
            label("$A$", (3.551178767049365,4.389270037746726), NE * labelscalefactor);
            dot((9.,3.),dotstyle);
            label("$B$", (9.14557023301717,2.8686000382692027), NE * labelscalefactor);
            dot((6.68,-2.08),dotstyle);
            label("$C$", (6.606469866917069,-2.4049161067078986), NE * labelscalefactor);
            dot((2.373492429373072,0.6862880245710273),dotstyle);
            label("$D$", (2.0584109693971078,0.5666683876839601), NE * labelscalefactor);
            dot((7.070615206872309,3.4460329938583647),dotstyle);
            label("$P$", (6.941296288820379,3.6219594875516457), NE * labelscalefactor);
            dot((4.739858471858444,2.07662144581455),linewidth(4.pt) + dotstyle);
            label("$Q$", (4.471951427283468,2.101289488074122), NE * labelscalefactor);
            dot((8.719877477199834,2.3866282690410148),linewidth(4.pt) + dotstyle);
            label("$K$", (8.852597113851774,2.198947194462587), NE * labelscalefactor);
            dot((9.306489730729668,3.6711068241839295),linewidth(4.pt) + dotstyle);
            label("$L$", (9.368787847619377,3.7893726985033), NE * labelscalefactor);
            dot((8.141511444765205,4.075226788687628),linewidth(4.pt) + dotstyle);
            label("$E$", (8.196895370957792,4.18000352405716), NE * labelscalefactor);
            clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
[/asy]

Claim: $E \in \odot(PBK)$ and $E \in \odot(CQL)$.

Proof: For $PBKE$ we have
\[ \measuredangle DEB = \measuredangle DCB = \measuredangle PKB. \]For $CQLE$ we have
\[ \measuredangle ECL = \measuredangle ECB = \measuredangle EDB = \measuredangle EQL. \]This shows the claim. $\square$

To finish it off, it suffices to show that $\measuredangle EBP = \measuredangle ECQ$ by considering a tangent to either $\odot(PBKE)$ or $\odot(CQLE)$ at $E$. This part is obviously true as
\[\measuredangle EBP = \measuredangle EBA = \measuredangle ECA = \measuredangle ECQ.\]So, we are done. $\blacksquare$
This post has been edited 1 time. Last edited by SatisfiedMagma, May 8, 2022, 6:07 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mogmog8
1080 posts
#22 • 2 Y
Y by centslordm, cubres
Let $T=(ABC)\cap\overline{PQ}.$ Note $$\measuredangle TPK=\measuredangle PDC=\measuredangle TBC=\measuredangle TBK$$and $$\measuredangle CKQ=\measuredangle CBD=\measuredangle CTD$$so $T$ lies on $(BKP)$ and $(CLQ).$ Let $\ell$ be the line tangent to $(CLQ)$ at $T$; we claim $\ell$ is tangent to $(BKP)$ at $T.$ Indeed, $$\measuredangle (\overline{DT},\ell)=\measuredangle QCT=\measuredangle ACT=\measuredangle ABT.$$$\square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IAmTheHazard
5001 posts
#23 • 1 Y
Y by cubres
Neat. Let $X=\overline{DP} \cap (ABCD)$. Reim's implies that $BKPX$ and $CLQX$ are cyclic. Now, to show that the two circles are tangent at $X$, it is sufficient to prove that $\measuredangle XBP=\measuredangle XCQ$ reason. This follows by
$$\measuredangle XBP=\measuredangle XBA=\measuredangle XCA=\measuredangle XCQ.~\blacksquare$$
This post has been edited 1 time. Last edited by IAmTheHazard, Aug 12, 2022, 2:06 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
HamstPan38825
8857 posts
#24 • 1 Y
Y by cubres
Let $E = \overline{DP} \cap (ABC)$. I claim that $E$ lies on both $(BKP)$ and $(CLQ)$. This is because $$\measuredangle PKB = \measuredangle DCK = \measuredangle DEB$$and similarly $\measuredangle QLC = \measuredangle DBC = \measuredangle DEC$. Thus it suffices to show that the tangent at $E$ to $(BKP)$ is also tangent to $(CLQ)$, which is equivalent to $\measuredangle EBP = \measuredangle ECQ$. This is evident.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AwesomeYRY
579 posts
#25 • 1 Y
Y by cubres
Let $X = DP\cap \omega$. Then, note that

Claim 1: $X\in (PBK)$
Proof: Angle chase with the following directed angles:
\[\angle PKB = \angle DCB = \angle DAB = \angle DXB = \angle PXB\]
Claim 2: $X\in (QLC)$.
Proof: Angle chase:
\[\angle XQL = \angle XDB = \angle XCB = \angle XCL\]
Thus, $X = (PKB)\cap (QLC)$. Let $\ell_1$ be the tangent to $(PKB)$ at $X$ and $\ell_2$ be the tangent to $(QLC)$ at $X$. Then, we have
\[\angle (\ell_1, XP) = \angle XBP = \angle XBA = \angle XCA = \angle XCQ = \angle (\ell_2, XQ)\]Since $X,P,Q$ are collinear, this means that $\ell_1$ and $\ell_2$ are the same line, which means that $(PKB)$ and $(QLC)$ share a tangent line with the same orientation at $X$, and therefore the two circles are tangent. $\blacksquare$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SQTHUSH
154 posts
#26 • 1 Y
Y by cubres
Let $T= \odot(PKB)\cap \odot(ABCD), S=\odot(QLC)\cap \odot(ABCD$
Since $PK//DC\Rightarrow \angle PKB=\angle PTB=\angle DAB$
So $T,P,D$ is collinear
Similarly, $S,Q,D$ is collinear
It shows that$T=S$
Finally,suppose $l_{1},l_{2}$ through point $T$,and tangent to $\odot(PKB)$,$\odot(QLC)$ respectively
$\measuredangle (l_{1},TK) = \angle TDC= \angle TDB+ \angle BDC= \angle LTK+ \angle TCL=\measuredangle (l_{2},TK)\Rightarrow l_{1}=l_{2}$
Which meas that $\odot(PKB)$and $\odot(QLC)$ are tangent.
This post has been edited 2 times. Last edited by SQTHUSH, Mar 20, 2023, 12:28 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SHZhang
109 posts
#28 • 1 Y
Y by cubres
Let $E = (ABCD) \cap DP$. Then \[\angle EPK = \angle EDC = 180^\circ - \angle EBC = \angle EBK,\]so $(EPBK)$ is cyclic. Similarly \[\angle EQL = \angle EDB = \angle ECB = \angle ECL\]gives $(EQCL)$ cyclic.

Now invert at $E$; in the inverted diagram, we have $ABCD$ collinear, $PEQD$ collinear, $(ABEP)$ cyclic, and $(ACQE)$ cyclic. Then $\angle ACQ = 180^\circ - \angle AEQ = \angle AEP = \angle ABP$, so $BP \parallel CQ$. Inverting back gives $(EPB) = (BKP)$ tangent to $(ECQ) = (CLQ)$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
thdnder
194 posts
#29 • 1 Y
Y by cubres
Let $DP$ meets $(ABCD)$ at $T$. Then Reim implies $BKPT$ and $CLQT$ are cyclic. Now by homothety centered $T$, it suffices to show that $\angle TBP = \angle TCQ$, which follows from $\angle TBP = \angle TBA = \angle TCA = \angle TCQ$. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathandski
738 posts
#30 • 2 Y
Y by ehuseyinyigit, cubres
All directed angles

Rating (MOHs): 0
Attachments:
This post has been edited 1 time. Last edited by Mathandski, Aug 23, 2024, 9:30 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Saucepan_man02
1322 posts
#31 • 1 Y
Y by cubres
Angle-Chase:

Let $X=DQ \cap (ABC)$. Then: $$\angle XQL = \angle XDB = \angle XCB = \angle XCL \implies X \in (CQL)$$$$\angle PXB = \angle DXB = 180^\circ - \angle DCB = 180^\circ - \angle BKP \implies X \in (BKP).$$Let $T$ be a point on $CD$ such that $TX$ is tangent. Then: $$\angle TXQ=\angle TXP = \angle XBP = \angle XBA = \angle XCA = \angle XCQ$$which implies $XT$ is also tangent to $(CQL)$ and we are done.
This post has been edited 1 time. Last edited by Saucepan_man02, Nov 18, 2024, 6:28 AM
Reason: EDIT
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
math004
23 posts
#32 • 1 Y
Y by cubres
Let $X=(DP)\cap (ABCD)$ other than $D.$ $(PK)\parallel CD$ so by Reim's theorem, we have $XPBK$ is cyclic. Similarily, $(QL) \parallel (BD)$ implies, by Reim's theorem, that $(XQCL)$ is cyclic. Thus, it suffices to prove that $\angle XBP=\angle XCQ.$ Indeed,
\[\angle XBP= \angle XBA=\angle XCA=\angle XCQ.\]

[asy]
import graph; size(10cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -28.672699506166545, xmax = 30.304799479546876, ymin = -13.213124589216047, ymax = 15.349276752032559;  /* image dimensions */
pen ffdxqq = rgb(1,0.8431372549019608,0); pen ffqqtt = rgb(1,0,0.2); pen wwqqcc = rgb(0.4,0,0.8); pen ffzzqq = rgb(1,0.6,0); pen ccffww = rgb(0.8,1,0.4); 

draw(circle((-4.374514807706929,4.554578946863126), 7.441362978795981), linewidth(0.8) + ffdxqq); 
draw(circle((-10.265245927810327,1.1410398077282977), 2.971023698496136), linewidth(0.8) + ffzzqq); 
draw(circle((-7.480815345801481,-3.611376349266896), 8.479064456814383), linewidth(0.8) + ccffww); 
 /* draw figures */
draw((-8.56658899673541,10.702781690419702)--(0.584132797532879,-0.9939070546732326), linewidth(0.8)); 
draw((-8.56658899673541,10.702781690419702)--(-8.787977427241902,-1.4366839156862143), linewidth(0.8)); 
draw((2.9926105352026013,3.5060813722090263)--(-8.694970695175076,3.6631852259780002), linewidth(0.8)); 
draw((0.584132797532879,-0.9939070546732326)--(2.9926105352026013,3.5060813722090263), linewidth(0.8) + ffqqtt); 
draw((0.584132797532879,-0.9939070546732326)--(-8.787977427241902,-1.4366839156862143), linewidth(0.8)); 
draw((-8.787977427241902,-1.4366839156862143)--(2.9926105352026013,3.5060813722090263), linewidth(0.8) + wwqqcc); 
draw((-15.75661080980647,-1.7659106896656425)--(-8.787977427241902,-1.4366839156862143), linewidth(0.8)); 
draw((-15.75661080980647,-1.7659106896656425)--(-2.9993751879215687,3.586625329960073), linewidth(0.8) + wwqqcc); 
draw((-8.694970695175076,3.6631852259780002)--(-11.49291255479232,-1.5644761264366276), linewidth(0.8) + ffqqtt); 
draw((-11.767160966015583,3.7044814464317337)--(-8.787977427241902,-1.4366839156862143), linewidth(0.8)); 
draw((-8.694970695175076,3.6631852259780002)--(-11.767160966015583,3.7044814464317337), linewidth(0.8)); 
 /* dots and labels */
dot((-8.56658899673541,10.702781690419702),linewidth(4pt) + dotstyle); 
label("$A$", (-9.721160237851564,10.678938154341909), NE * labelscalefactor); 
dot((-8.787977427241902,-1.4366839156862143),linewidth(4pt) + dotstyle); 
label("$B$", (-9.25798616204753,-2.5601208457233233), NE * labelscalefactor); 
dot((0.584132797532879,-0.9939070546732326),linewidth(4pt) + dotstyle); 
label("$C$", (0.9704413452915136,-1.9425554113179482), NE * labelscalefactor); 
dot((2.9926105352026013,3.5060813722090263),linewidth(4pt) + dotstyle); 
label("$D$", (3.1319203657103305,3.808522696582109), NE * labelscalefactor); 
dot((-8.694970695175076,3.6631852259780002),linewidth(4pt) + dotstyle); 
label("$P$", (-9.605366718900555,4.117305413784797), NE * labelscalefactor); 
dot((-2.9993751879215687,3.586625329960073),linewidth(4pt) + dotstyle); 
label("$Q$", (-2.850744780091752,3.8857183758827807), NE * labelscalefactor); 
dot((-11.49291255479232,-1.5644761264366276),linewidth(4pt) + dotstyle); 
label("$K$", (-11.419465182466347,-2.6759143646743313), NE * labelscalefactor); 
dot((-15.75661080980647,-1.7659106896656425),linewidth(4pt) + dotstyle); 
label("$L$", (-16.63017353526171,-2.6373165250239956), NE * labelscalefactor); 
dot((-11.767160966015583,3.7044814464317337),linewidth(4pt) + dotstyle); 
label("$X$", (-12.615998211626763,3.847120536232445), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
[/asy]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ilikeminecraft
348 posts
#33 • 1 Y
Y by cubres
Let $E = DP \cap (ABCD)$ that isn't $D.$ By the given conditions, $\angle EBK = \angle EDC = \angle EPK$ and $\angle QEC = \angle DBC = \angle QLC,$ which tells us $BKEP, CLEQ$ are both concyclic. To finish, note that $EBAC$ is concyclic, so $\angle EBP = \angle ECA.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
endless_abyss
41 posts
#34 • 1 Y
Y by cubres
The parallel condition is practically begging us to angle chase.

Claim - The tangency point is none other than the intersection of $P Q$ and the circumcircle of $A B C D$

Note that -
Let $T$ denote the intersection of $P Q$ and the circumcircle of $A B C D$
$\angle B A D = \angle B K P = \angle B T D$
and
$\angle D T C = \angle M L C$

$\square$

:starwars:
Z K Y
N Quick Reply
G
H
=
a