Y by Adventure10, Mango247
The tangents to the circumcircle of
at
and
meet at
. The circumcircle of
meets sides
and
again at
and
respectively. Let
be the circumcentre of
. Show that
is perpendicular to
.













Stay ahead of learning milestones! Enroll in a class over the summer!
\[ \begin{align*}\prod_{\text{cyc}} (x_1^2+1) = \prod_{\text{cyc}} (x_1-i)(x_1+i) &= \left[\prod_{\text{cyc}} (i-x)\right] \left[\prod_{\text{cyc}} (-i-x)\right] \\ &= P(i)P(-i) \\ &= (b-d-1)^2+(c-a)^2 \\ &\ge (5-1)^2+0^2 \\ &= 16.\end{align*} \]
\[ \begin{align*}\begin{vmatrix} a^3 & b^3 & c^3 \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix} = -\sum_{\text{cyc}} a^3(b-c) &= -\sum_{\text{cyc}} \left[a^3(b-c) + a^2(b^2 - c^2) \\ &= -\sum_{\text{cyc}} a^2(b-c)(a+b+c) \\ &= (a-b)(b-c)(c-a)(a+b+c). \end{align*} \]
Something appears to not have loaded correctly.