Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
G, L, H are collinear
Ink68   3
N 10 minutes ago by luci1337
Given an acute, non-isosceles triangle $ABC$. $B, C$ lie on a moving circle $(K)$. $(K)$ intersects $CA$ at $E$ and $BA$ at $F$. $BE, CF$ intersect at $G$. $KG, BC$ intersect at $D$. $L$ is the perpendicular image of $D$ with respect to $EF$. Prove that $G, L$ and the orthocenter $H$ are collinear.
3 replies
Ink68
2 hours ago
luci1337
10 minutes ago
Problem 1, BMO 2020
dangerousliri   40
N 44 minutes ago by Giant_PT
Source: Problem 1, BMO 2020
Let $ABC$ be an acute triangle with $AB=AC$, let $D$ be the midpoint of the side $AC$, and let $\gamma$ be the circumcircle of the triangle $ABD$. The tangent of $\gamma$ at $A$ crosses the line $BC$ at $E$. Let $O$ be the circumcenter of the triangle $ABE$. Prove that midpoint of the segment $AO$ lies on $\gamma$.

Proposed by Sam Bealing, United Kingdom
40 replies
dangerousliri
Nov 1, 2020
Giant_PT
44 minutes ago
Terrifying "2018 \times 2019" board
IndoMathXdZ   20
N an hour ago by HamstPan38825
Source: APMO 2019 P4
Consider a $2018 \times 2019$ board with integers in each unit square. Two unit squares are said to be neighbours if they share a common edge. In each turn, you choose some unit squares. Then for each chosen unit square the average of all its neighbours is calculated. Finally, after these calculations are done, the number in each chosen unit square is replaced by the corresponding average.
Is it always possible to make the numbers in all squares become the same after finitely many turns?
20 replies
IndoMathXdZ
Jun 11, 2019
HamstPan38825
an hour ago
inequality
mathematical-forest   3
N 2 hours ago by RainbowNeos
For positive real intengers $x_{1} ,x_{2} ,\cdots,x_{n} $, such that $\prod_{i=1}^{n} x_{i} =1$
proof:
$$\sum_{i=1}^{n} \frac{1}{1+\sum _{j\ne i}x_{j}  } \le 1$$
3 replies
mathematical-forest
May 15, 2025
RainbowNeos
2 hours ago
At least k points of S equidistant from P
orl   9
N 2 hours ago by Twan
Source: IMO 1989/3 , ISL 20, ILL 66
Let $ n$ and $ k$ be positive integers and let $ S$ be a set of $ n$ points in the plane such that

i.) no three points of $ S$ are collinear, and

ii.) for every point $ P$ of $ S$ there are at least $ k$ points of $ S$ equidistant from $ P.$

Prove that:
\[ k < \frac {1}{2} + \sqrt {2 \cdot n}
\]
9 replies
orl
Nov 19, 2005
Twan
2 hours ago
Gergonne point Harmonic quadrilateral
niwobin   1
N 2 hours ago by on_gale
Triangle ABC has incircle touching the sides at D, E, F as shown.
AD, BE, CF concurrent at Gergonne point G.
BG and CG cuts the incircle at X and Y, respectively.
AG cuts the incircle at K.
Prove: K, X, D, Y form a harmonic quadrilateral. (KX/KY = DX/DY)
1 reply
niwobin
Yesterday at 8:17 PM
on_gale
2 hours ago
Find the minimum
sqing   8
N 3 hours ago by sqing
Source: China Shandong High School Mathematics Competition 2025 Q4
Let $ a,b,c>0,abc>1$. Find the minimum value of $ \frac {abc(a+b+c+8)}{abc-1}. $
8 replies
sqing
Yesterday at 9:12 AM
sqing
3 hours ago
Interesting inequalities
sqing   3
N 3 hours ago by sqing
Source: Own
Let $ a,b >0 $ and $ a^2-ab+b^2\leq 1 $ . Prove that
$$a^4 +b^4+\frac{a }{b +1}+ \frac{b }{a +1} \leq 3$$$$a^3 +b^3+\frac{a^2}{b^2+1}+ \frac{b^2}{a^2+1} \leq 3$$$$a^4 +b^4-\frac{a}{b+1}-\frac{b}{a+1} \leq 1$$$$a^4+b^4 -\frac{a^2}{b^2+1}- \frac{b^2}{a^2+1}\leq 1$$$$a^3+b^3 -\frac{a^3}{b^3+1}- \frac{b^3}{a^3+1}\leq 1$$
3 replies
sqing
May 9, 2025
sqing
3 hours ago
Marking vertices in splitted triangle
mathisreal   2
N 3 hours ago by sopaconk
Source: Mexico
Let $n$ be a positive integer. Consider a figure of a equilateral triangle of side $n$ and splitted in $n^2$ small equilateral triangles of side $1$. One will mark some of the $1+2+\dots+(n+1)$ vertices of the small triangles, such that for every integer $k\geq 1$, there is not any trapezoid(trapezium), whose the sides are $(1,k,1,k+1)$, with all the vertices marked. Furthermore, there are no small triangle(side $1$) have your three vertices marked. Determine the greatest quantity of marked vertices.
2 replies
mathisreal
Feb 7, 2022
sopaconk
3 hours ago
distance of a point from incircle equals to a diameter of incircle
parmenides51   5
N 3 hours ago by Captainscrubz
Source: 2019 Oral Moscow Geometry Olympiad grades 8-9 p1
In the triangle $ABC, I$ is the center of the inscribed circle, point $M$ lies on the side of $BC$, with $\angle BIM = 90^o$. Prove that the distance from point $M$ to line $AB$ is equal to the diameter of the circle inscribed in triangle $ABC$
5 replies
parmenides51
May 21, 2019
Captainscrubz
3 hours ago
f(a + b) = f(a) + f(b) + f(c) + f(d) in N-{O}, with 2ab = c^2 + d^2
parmenides51   8
N Yesterday at 9:55 PM by TiagoCavalcante
Source: RMM Shortlist 2016 A1
Determine all functions $f$ from the set of non-negative integers to itself such that $f(a + b) = f(a) + f(b) + f(c) + f(d)$, whenever $a, b, c, d$, are non-negative integers satisfying $2ab = c^2 + d^2$.
8 replies
parmenides51
Jul 4, 2019
TiagoCavalcante
Yesterday at 9:55 PM
Perpendicularity with Incircle Chord
tastymath75025   31
N Apr 24, 2025 by cj13609517288
Source: 2019 ELMO Shortlist G3
Let $\triangle ABC$ be an acute triangle with incenter $I$ and circumcenter $O$. The incircle touches sides $BC,CA,$ and $AB$ at $D,E,$ and $F$ respectively, and $A'$ is the reflection of $A$ over $O$. The circumcircles of $ABC$ and $A'EF$ meet at $G$, and the circumcircles of $AMG$ and $A'EF$ meet at a point $H\neq G$, where $M$ is the midpoint of $EF$. Prove that if $GH$ and $EF$ meet at $T$, then $DT\perp EF$.

Proposed by Ankit Bisain
31 replies
tastymath75025
Jun 27, 2019
cj13609517288
Apr 24, 2025
Perpendicularity with Incircle Chord
G H J
G H BBookmark kLocked kLocked NReply
Source: 2019 ELMO Shortlist G3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
tastymath75025
3223 posts
#1 • 8 Y
Y by amar_04, GeoMetrix, itslumi, tiendung2006, Adventure10, Mango247, cubres, Rounak_iitr
Let $\triangle ABC$ be an acute triangle with incenter $I$ and circumcenter $O$. The incircle touches sides $BC,CA,$ and $AB$ at $D,E,$ and $F$ respectively, and $A'$ is the reflection of $A$ over $O$. The circumcircles of $ABC$ and $A'EF$ meet at $G$, and the circumcircles of $AMG$ and $A'EF$ meet at a point $H\neq G$, where $M$ is the midpoint of $EF$. Prove that if $GH$ and $EF$ meet at $T$, then $DT\perp EF$.

Proposed by Ankit Bisain
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rocketscience
466 posts
#2 • 6 Y
Y by XianYing-Li, Muaaz.SY, Adventure10, Mango247, MS_asdfgzxcvb, cubres
Define $T$ instead as the foot to $EF$ from $D$; we wish to show $T \in GH$. Let $(AI)$ meet $(ABC)$ a second time at a point $T'$ so that $I, T, T'$ are collinear, say by inversion about the incircle. By radical axis on $(AI), (ABC), (A'EFG)$ we get a point $X = AT' \cap EF \cap A'G$. Since $\angle XGA = \angle XMA = 90^{\circ}$, point $X$ lies on $(AMG)$.

Now note that
\[-1 = (A, I; E, F) \stackrel{T'}{=} (X, T; E, F),\]so by properties of harmonic divisions we have $TM \cdot TX = TE \cdot TF$. This implies that $T$ lies on the radical axis of $(AMG)$ and $(A'EFG)$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Wizard_32
1566 posts
#3 • 4 Y
Y by Ramisoka, Adventure10, Mango247, cubres
This is a really rich configuration!
tastymath75025 wrote:
Let $\triangle ABC$ be an acute triangle with incenter $I$ and circumcenter $O$. The incircle touches sides $BC,CA,$ and $AB$ at $D,E,$ and $F$ respectively, and $A'$ is the reflection of $A$ over $O$. The circumcircles of $ABC$ and $A'EF$ meet at $G$, and the circumcircles of $AMG$ and $A'EF$ meet at a point $H\neq G$, where $M$ is the midpoint of $EF$. Prove that if $GH$ and $EF$ meet at $T$, then $DT\perp EF$.

Proposed by Ankit Bisain
Let $X=(AMG) \cap AT.$ Since $T$ lies on the radical axis of $(AMG),(EFG),$ hence power of a point gives $X \in (AFE).$ Define $Y=(AEF) \cap (ABC).$ Clearly $\measuredangle IYA=\pi/2=\measuredangle A'YA,$ and so $Y \in A'I.$

Now define $P$ to be the radical center of $(AEF), (FEG), (ABC).$ Hence $P$ lies on $AY,EF$ and $GA'.$

Key Claim: $I,T$ and $Y$ are collinear.
Proof: We have $$\measuredangle PMA=\pi/2=\measuredangle A'GA=\measuredangle PGA$$so $P \in (AMG).$
Further, we get $\measuredangle PXA=\pi/2=\measuredangle IXA$ and so $I,X,P$ are also collinear. $\square$

Since $AT \perp PI, PT \perp AI,$ hence $T$ is the orthocenter of $\triangle API.$ Hence $IT \perp AP$ which implies that $T, I, Y$ are collinear.
Notice that the power of $I$ with respect to $(AMP)$ is $ $ $IM \cdot IA=r^2,$ where $r$ is the inradius of $ABC.$

So inverting about the incircle of $\triangle ABC,$ we find that $T=AX \cap FE \mapsto (IMP) \cap (IEF)=Y.$ But $Y \in (ABC),$ which is the image of the nine-point circle of $DEF$ under this inversion. So $T$ must be the foot of the perpendicular from $D,$ and so we are done. $\blacksquare$
[asy]
  /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(15cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -14.261007052484016, xmax = 13.427339353659017, ymin = -10.769656125630911, ymax = 7.171127796903298;  /* image dimensions */
pen zzttff = rgb(0.6,0.2,1); pen ccqqqq = rgb(0.2,0,0); 

draw((-3.6121766694775372,3.8402861529741235)--(-5.87,-5.79)--(6.97,-5.67)--cycle, linewidth(0) + ccqqqq); 
 /* draw figures */
draw(circle((0.5170807117156297,-2.207636153572406), 7.323123018641797), linewidth(0.2) + blue); 
draw(circle((-1.649252980059181,-2.412125033326211), 3.338282946745299), linewidth(0.4) + blue); 
draw(circle((-0.6253105070707227,-5.673642231754901), 5.869971922586647), linewidth(0.2)); 
draw((-4.899405335760015,-1.6501258881411427)--(0.5821675789741579,0.07079569059024113), linewidth(0.4)); 
draw((-1.649252980059181,-2.412125033326211)--(-3.6121766694775372,3.8402861529741235), linewidth(0.4)); 
draw(circle((-6.943377279563433,0.2513213626910499), 4.896689266282706), linewidth(0.4) + zzttff); 
draw(circle((-2.6307148247683596,0.7140805598239562), 3.2766490143534344), linewidth(0.4) + linetype("4 4")); 
draw((-10.274577889649324,-3.3376434275920284)--(-4.899405335760015,-1.6501258881411427), linewidth(0.4)); 
draw((-2.052141797423591,0.020277581592099976)--(-6.399034138217151,-4.615017745406283), linewidth(0.4)); 
draw((-3.084191616558338,-1.0802455804311601)--(-1.6180554364422242,-5.750262200340581), linewidth(0.4)); 
draw((-10.274577889649324,-3.3376434275920284)--(4.646338092908797,-8.255558460118936), linewidth(0.4) + linetype("4 4")); 
draw((-3.6121766694775372,3.8402861529741235)--(4.646338092908797,-8.255558460118936), linewidth(0.2)); 
draw((-4.899405335760015,-1.6501258881411427)--(-1.6180554364422242,-5.750262200340581), linewidth(0.2)); 
draw((-1.6180554364422242,-5.750262200340581)--(0.5821675789741579,0.07079569059024113), linewidth(0.2)); 
draw((-5.821271838735171,1.460253933705996)--(4.646338092908797,-8.255558460118936), linewidth(0.4) + linetype("4 4")); 
draw((-2.926570903626123,-2.549184361059153)--(-3.6121766694775372,3.8402861529741235), linewidth(0.4)); 
draw((-3.6121766694775372,3.8402861529741235)--(-10.274577889649324,-3.3376434275920284), linewidth(0.4)); 
draw((-10.274577889649324,-3.3376434275920284)--(-1.649252980059181,-2.412125033326211), linewidth(0.4) + linetype("4 4")); 
 /* dots and labels */
dot((-3.6121766694775372,3.8402861529741235),dotstyle); 
label("$A$", (-3.9338597725524567,4.352238105697483), NE * labelscalefactor); 
dot((-5.87,-5.79),dotstyle); 
label("$B$", (-6.252198957843215,-6.396425389741515), NE * labelscalefactor); 
dot((6.97,-5.67),dotstyle); 
label("$C$", (7.183630411455497,-6.317391099333876), NE * labelscalefactor); 
dot((0.5170807117156297,-2.207636153572406),linewidth(4pt) + dotstyle); 
label("$O$", (0.6237843076214202,-1.9968498903829057), NE * labelscalefactor); 
dot((-1.649252980059181,-2.412125033326211),linewidth(4pt) + dotstyle); 
label("$I$", (-1.5628310603232722,-3.0769851926206484), NE * labelscalefactor); 
dot((-1.6180554364422242,-5.750262200340581),linewidth(4pt) + dotstyle); 
label("$D$", (-1.4047624795079932,-6.264701572395449), NE * labelscalefactor); 
dot((0.5821675789741579,0.07079569059024113),linewidth(4pt) + dotstyle); 
label("$E$", (0.6764738345598466,0.26879976796943206), NE * labelscalefactor); 
dot((-4.899405335760015,-1.6501258881411427),linewidth(4pt) + dotstyle); 
label("$F$", (-5.646269398051312,-1.7070574922215602), NE * labelscalefactor); 
dot((4.646338092908797,-8.255558460118936),linewidth(4pt) + dotstyle); 
label("$A'$", (4.575498828003394,-8.899177919316772), NE * labelscalefactor); 
dot((-6.399034138217151,-4.615017745406283),linewidth(4pt) + dotstyle); 
label("$G$", (-7.068886625388823,-5.237255797096133), NE * labelscalefactor); 
dot((-2.1586188783929288,-0.789665098775451),linewidth(4pt) + dotstyle); 
label("$M$", (-2.063381566238322,-0.5742326630453913), NE * labelscalefactor); 
dot((-2.926570903626123,-2.549184361059153),linewidth(4pt) + dotstyle); 
label("$X$", (-2.985448287660783,-3.1033299560898615), NE * labelscalefactor); 
dot((-10.274577889649324,-3.3376434275920284),linewidth(4pt) + dotstyle); 
label("$P$", (-10.54639540332496,-4.078086204450751), NE * labelscalefactor); 
dot((-5.821271838735171,1.460253933705996),linewidth(4pt) + dotstyle); 
label("$Y$", (-6.331233248250855,1.5860379414300936), NE * labelscalefactor); 
dot((-2.052141797423591,0.020277581592099976),linewidth(4pt) + dotstyle); 
label("$H$", (-1.9580025123614697,0.2424550045002188), NE * labelscalefactor); 
dot((-3.084191616558338,-1.0802455804311601),linewidth(4pt) + dotstyle); 
label("$T$", (-3.0644825780684224,-0.6796117169222443), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
This post has been edited 1 time. Last edited by Wizard_32, Jul 4, 2019, 3:26 AM
Reason: Undefined variable.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Flash_Sloth
230 posts
#4 • 4 Y
Y by Adventure10, Mango247, Radin.AmirAslani, cubres
Let $N$ be the middle of the arc $BC$.
Claim1: The intersection of $A'I$ and $ND$ lies on $\odot O$.
Proof: Let $J = ND \cap \odot O$, then $ND \cdot NJ = NC^2 = NI^2$, thus $\triangle NID \sim \triangle NJI$. Hence
\[\angle IJN = \angle NID = 90^\circ - (\angle B + \frac{1}{2} \angle A) =90^\circ - \angle NBA = 90^\circ - \angle NA'A = \angle A'AN = \angle A'JN \]Therefore, $A',I,J$ are collinear.
Claim 2: Let $T = A'J \cap EF$, then $DT \perp EF$.
Proof: Since $90^\circ = \angle IJA = \angle IMT$, we have $IT \cdot IJ = IM \cdot IA = r^2 = ID^2$. Therefore,
\[ \angle TDI = \angle IJD =\angle NID\]implying that $DT \parallel NI$, hence $DT \perp EF$.
Claim 3: $AJ$, $EF$, $A'G$ are concurrent, denote the intersection by $L$.
Proof: Application of radical axis theorem to $\odot O$, $\odot (AEFIJ)$ and $\odot(A'EFG)$.
Claim 4: $L,G,M,A$ are concyclic; $L,I,M,J$ are concyclic.
Proof: Since $\angle AML =\angle AGL=90^\circ$ and $\angle IML=\angle IJL =90^\circ$ as well.
Finally, $MT \cdot TL = IT \cdot TJ = FT \cdot TE$, meaning that $T$ lies on the radical axis of $\odot(AMLG)$ and $\odot(A'EFG)$, which is $HG$.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jbaca
225 posts
#5 • 4 Y
Y by translate, Adventure10, Mango247, cubres
Solution. Redefine $T$ as the $D$-foot of altitude in $\bigtriangleup DEF$. It's not hard to show that $T,\ I$ and $A'$ are collinear. Redefine also $H$ as $\overline{GT}\cap (A'EF)$, $G\neq H$, so it suffices to show that $A,\ H,\ M$ and $G$ are concyclic.
Let $R=\overline{A'I}\cap (ABC),\ R\neq A'$. Clearly, it lies on $(AEF)$. By the radical axis theorem, $AR,\ EF$ and $GA'$ concur at a point, say $P$. Moreover, being $\angle AMP=\angle AGP=90^\circ$, we infer that $AMGP$ is cyclic. Because $\angle TMI=\angle ART=90^\circ$, we get
$$PT\cdot PM=PR\cdot PA=PF\cdot PE$$which gives us that $(P,T;F,E)=-1$, implying the following equality
$$PT\cdot TM=FT\cdot TE=GT\cdot TH$$thus $H$ lies on $(PGM)$ and then it lies on $(AMG)$ as well, as required. $\blacksquare$
This post has been edited 1 time. Last edited by jbaca, Jun 30, 2019, 4:32 AM
Reason: Typo
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GeoMetrix
924 posts
#6 • 4 Y
Y by AlastorMoody, mueller.25, amar_04, cubres
Here i present a solution that I,mueller.25,amar_04 found.
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(15cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -24.620625249953825, xmax = 27.856252010786847, ymin = -16.24019088506529, ymax = 18.41499364361862;  /* image dimensions */
pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen wvvxds = rgb(0.396078431372549,0.3411764705882353,0.8235294117647058); pen ffqqff = rgb(1,0,1); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); pen qqffff = rgb(0,1,1); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); pen dbwrru = rgb(0.8588235294117647,0.3803921568627451,0.0784313725490196); 
 /* draw figures */
draw((-3.527646662682087,13.712520226747058)--(-7.26,-4.11), linewidth(0.4) + rvwvcq); 
draw((-7.26,-4.11)--(13.395645203182287,-4.419894946997829), linewidth(0.4) + rvwvcq); 
draw((13.395645203182287,-4.419894946997829)--(-3.527646662682087,13.712520226747058), linewidth(0.4) + rvwvcq); 
draw(circle((-0.14166328775828607,1.5839579345872608), 5.800101026607598), linewidth(0.4) + wvvxds); 
draw((-5.818616292086269,2.7728130584379342)--(-0.14166328775828446,1.5839579345872612), linewidth(0.4) + ffqqff); 
draw((-0.14166328775828446,1.5839579345872612)--(4.098565608016035,5.541435771580792), linewidth(0.4) + green); 
draw((-0.14166328775828446,1.5839579345872612)--(-0.22867193493617494,-4.2154904369538455), linewidth(0.4) + wrwrwr); 
draw(circle((3.176913954878332,3.006394992923919), 12.632191044978963), linewidth(0.4)); 
draw((-3.527646662682087,13.712520226747058)--(9.88147457243875,-7.699730240899219), linewidth(0.4) + qqffff); 
draw((-5.818616292086269,2.7728130584379342)--(4.098565608016035,5.541435771580792), linewidth(0.4) + linetype("2 2") + wvvxds); 
draw(circle((1.2960492996280217,-3.5659157486317214), 9.528795798604248), linewidth(0.4) + dtsfsf); 
draw(circle((-9.961397440505575,6.766318481782098), 9.467991748670812), linewidth(0.4) + dtsfsf); 
draw((-0.5445625005599162,5.78342099642709)--(-8.17647769874491,-2.531903351900492), linewidth(0.4) + ffqqff); 
draw((-2.442737265572527,3.7152718581028)--(-0.22867193493617494,-4.2154904369538455), linewidth(0.4) + qqffff); 
draw((-0.14166328775828446,1.5839579345872612)--(-5.12964304175612,-1.3759795466042293), linewidth(0.4) + green); 
draw((-0.14166328775828446,1.5839579345872612)--(-0.5128097549578929,7.372172013104032), linewidth(0.4) + wrwrwr); 
draw((-5.12964304175612,-1.3759795466042293)--(-0.5128097549578929,7.372172013104032), linewidth(0.4) + ffqqff); 
draw((-3.527646662682087,13.712520226747058)--(-0.14166328775828446,1.5839579345872612), linewidth(0.4) + wrwrwr); 
draw((9.88147457243875,-7.699730240899219)--(-2.442737265572527,3.7152718581028), linewidth(0.4) + blue); 
draw((-16.395148218329062,-0.17988326318285885)--(-3.527646662682087,13.712520226747058), linewidth(0.4) + linetype("4 4") + wvvxds); 
draw(circle((-1.8346549752201853,7.64823908066716), 6.296167617885918), linewidth(0.4)); 
draw((-5.818616292086269,2.7728130584379342)--(-0.5128097549578929,7.372172013104032), linewidth(0.4) + wrwrwr); 
draw((-0.5128097549578929,7.372172013104032)--(4.098565608016035,5.541435771580792), linewidth(0.4) + wrwrwr); 
draw((-8.010663903216715,8.872428769327545)--(-5.818616292086269,2.7728130584379342), linewidth(0.4) + blue); 
draw((-8.010663903216715,8.872428769327545)--(4.098565608016035,5.541435771580792), linewidth(0.4) + blue); 
draw((-16.395148218329062,-0.17988326318285885)--(9.88147457243875,-7.699730240899219), linewidth(0.4) + linetype("4 4") + wvvxds); 
draw((-3.527646662682087,13.712520226747058)--(-8.17647769874491,-2.531903351900492), linewidth(0.4) + ffqqff); 
draw((-5.818616292086269,2.7728130584379342)--(-0.22867193493617494,-4.2154904369538455), linewidth(0.4) + dbwrru); 
draw((-0.22867193493617494,-4.2154904369538455)--(4.098565608016035,5.541435771580792), linewidth(0.4) + dbwrru); 
draw((-8.010663903216715,8.872428769327545)--(-2.442737265572527,3.7152718581028), linewidth(0.4) + blue); 
draw((-16.395148218329062,-0.17988326318285885)--(-5.818616292086269,2.7728130584379342), linewidth(0.4) + linetype("4 4") + wvvxds); 
 /* dots and labels */
dot((-3.527646662682087,13.712520226747058),dotstyle); 
label("$A$", (-3.391343085381462,14.053279169998621), NE * labelscalefactor); 
dot((-7.26,-4.11),dotstyle); 
label("$B$", (-7.139691461148653,-3.768413562058098), NE * labelscalefactor); 
dot((13.395645203182287,-4.419894946997829),dotstyle); 
label("$C$", (13.71475586584699,-4.722538603162473), NE * labelscalefactor); 
dot((-0.14166328775828446,1.5839579345872612),linewidth(4pt) + dotstyle); 
label("$I$", (-0.017829547190990128,1.8541090015926833), NE * labelscalefactor); 
dot((-0.22867193493617494,-4.2154904369538455),linewidth(4pt) + dotstyle); 
label("$D$", (-0.08598133584130269,-3.9387930336838792), NE * labelscalefactor); 
dot((4.098565608016035,5.541435771580792),linewidth(4pt) + dotstyle); 
label("$E$", (4.2416572434535444,5.806912743310808), NE * labelscalefactor); 
dot((-5.818616292086269,2.7728130584379342),linewidth(4pt) + dotstyle); 
label("$F$", (-5.6744280051669325,3.046765302973152), NE * labelscalefactor); 
dot((3.1769139548783314,3.0063949929239193),linewidth(4pt) + dotstyle); 
label("$O$", (3.3216080966743253,3.2852965632492457), NE * labelscalefactor); 
dot((9.88147457243875,-7.699730240899219),dotstyle); 
label("$A'$", (10.034559278730113,-7.346382466199505), NE * labelscalefactor); 
dot((-8.17647769874491,-2.531903351900492),linewidth(4pt) + dotstyle); 
label("$G$", (-8.025664713602715,-2.269074211751223), NE * labelscalefactor); 
dot((-0.8600253420351174,4.157124415009363),linewidth(4pt) + dotstyle); 
label("$M$", (-0.733423328019272,4.443876970304559), NE * labelscalefactor); 
dot((-0.5445625005599162,5.78342099642709),linewidth(4pt) + dotstyle); 
label("$H$", (-0.3926643847677092,6.045444003586902), NE * labelscalefactor); 
dot((-2.442737265572527,3.7152718581028),linewidth(4pt) + dotstyle); 
label("$T$", (-2.3009144669764607,4.000890344077527), NE * labelscalefactor); 
dot((-5.12964304175612,-1.3759795466042293),linewidth(4pt) + dotstyle); 
label("$K$", (-4.992910118663807,-1.1104938046959105), NE * labelscalefactor); 
dot((-0.5128097549578929,7.372172013104032),linewidth(4pt) + dotstyle); 
label("$L$", (-0.3926643847677092,7.647011036869246), NE * labelscalefactor); 
dot((-16.395148218329062,-0.17988326318285885),linewidth(4pt) + dotstyle); 
label("$T'$", (-16.272031140290537,0.08216249668455824), NE * labelscalefactor); 
dot((-8.010663903216715,8.872428769327545),linewidth(4pt) + dotstyle); 
label("$J$", (-7.889361136302091,9.14635038717612), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]

Proof: Let $J=A'I \cap \odot(ABC)$. Notice that it is sufficient to show that if $T$ is the foot of the altitude from $D$ onto $EF$ then $T \in$ radical axis of $\odot(AMG)$ and $\odot(A'EF)$. Now we state a lemma.

Claim: If $AJ \cap EF=T'$ then $T'$ is the harmonic conjugate of $T$ w.r.t $EF$.

Proof: Firstly it's a well known fact that $\overline{(I,T,J)}$ is a collinear triple (see here ) Notice that since $\overline{IE}=\overline{IF} \implies \angle FJI=\angle IJE$. But also notice that $\angle TJT'=90^\circ$ $\implies$ $(T,T';F,E)=-1$. Done $\square$.

Now back to the main problem. Firstly notice that by radical axis theorem on $\odot(ABC),\odot(AEF),\odot(A'EF) \implies AJ,EF,A'G$ are concurrent. So we could define $T'=EF \cap A'G$. But notice that $\angle AMT'=90^\circ$ and also $\angle AGT'=90^\circ$ $\implies$ $T' \in \odot(AMG)$. But now finally notice that $$\text{Pow}_{\odot(A'FE)}{T}=\overline{TF} \cdot \overline{TE}=\overline{TT'} \cdot \overline{TM}=\text{Pow}_{\odot(AMG)}{T}$$where the last part follows from the claim. This immediately implies $T \in $ radical axis of $\odot(A'FE)$ and $\odot(AMG)$ as desired $\blacksquare$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maxito12345
83 posts
#7 • 1 Y
Y by cubres
Comparing to imo problems ,what level is this.Can anyone give his opinion.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AmirKhusrau
230 posts
#8 • 1 Y
Y by cubres
Maxito12345 wrote:
Comparing to imo problems ,what level is this.Can anyone give his opinion.

I would say $\leq$ G4. Actually this is quite a well known configuration now (just a mix of well known lemmas), so it is easy to most of the people.

@below Hmm maybe.
This post has been edited 2 times. Last edited by AmirKhusrau, May 13, 2020, 11:58 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maxito12345
83 posts
#9 • 2 Y
Y by Mango247, cubres
AmirKhusrau wrote:
Maxito12345 wrote:
Comparing to imo problems ,what level is this.Can anyone give his opinion.

I would say $\leq$ G4. Actually this is quite a well known configuration now (just a mix of well known lemmas), so it is easy to most of the people.

Could it be a p2 (like the one of imo 2019)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathematicsislovely
245 posts
#10 • 1 Y
Y by cubres
Let circumcircle of $AEF$ cut $(ABC)$ at $R$.

Claim:$AR,BG,EF$ concur at a point.
proof: Radical axis theorem on $(ARFE),(EFA'),(ABC)$ shows that these 3 lines are concurrent.Let this point of concurrency be $S$.$\blacksquare$

Claim:$S$ lies on $AMG$
proof: $\angle AMS= \angle AGS=90^\circ$$\blacksquare$

Now observe that,$ST.TM=GT.TH=FT.TE$. As $M$ is the midpoint of $EF$ we have $(S,T;F,,E)=-1$.[It can be seen considering a circle with diameter $EF$ and centre $M$ then under inversion in this circle $S,T$ swaps, as $ST.TM=FT.TE$].So we have $ST.SM=SF.SE$.From this we get the ninepoint circle of $DEF$ cut $EF$ in $T$ except $M$.So $DT\perp EF$$\blacksquare$
This post has been edited 1 time. Last edited by Mathematicsislovely, May 13, 2020, 12:59 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maxito12345
83 posts
#11 • 1 Y
Y by cubres
Maxito12345 wrote:
AmirKhusrau wrote:
Maxito12345 wrote:
Comparing to imo problems ,what level is this.Can anyone give his opinion.

I would say $\leq$ G4. Actually this is quite a well known configuration now (just a mix of well known lemmas), so it is easy to most of the people.

Could it be a p2 (like the one of imo 2019)

?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
khina
994 posts
#12 • 1 Y
Y by cubres
i think its a medium problem, so sure.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maxito12345
83 posts
#13 • 1 Y
Y by cubres
Mr Evan chen ,how many mohs?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maxito12345
83 posts
#14 • 1 Y
Y by cubres
bump????
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathlogician
1051 posts
#15 • 1 Y
Y by cubres
My solution is the same as probably half of this thread, but whatever.

Let $T'$ be the foot of the perpendicular from $D$ to $EF$. Let $R = EF \cap (AMG)$, and let $Q = (AEIF) \cap (ABC)$. It suffices to show that $G,T',H$ are collinear, or by radical axes and harmonic bundles it suffices to show that $(E,F;R,T') = -1$.

Claim: $Q,T',I$ collinear.

Proof: We invert around the incircle. let $Q'$ be the intersection of $T'I$ with $(ABC)$. Note that after the inversion, $Q'$ gets sent to the intersection of line $EF$ with the nine-point circle of $(DEF)$, so $T'$ and $Q'$ are inverses. Now $\angle AQ'I = \angle AMT' = 90$, so $Q=Q'$.

Now, note that $\angle RGA + \angle AGA' = 90+90=180$, so $R,G,A'$ are collinear. Moreover, by radical axes on $(AEIF), (A'GFE), (ABA'C)$ we find that $A,Q,R$ are collinear. Now, $(E,F;R,T') \stackrel{Q}{=} (E,F;A,I) = -1$, which is what we wanted.
This post has been edited 2 times. Last edited by mathlogician, Feb 22, 2021, 5:09 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anyone__42
92 posts
#17 • 1 Y
Y by cubres
check this https://artofproblemsolving.com/community/c946900h1911664_properties_of_the_sharkydevil_point
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Dr_Vex
562 posts
#18 • 1 Y
Y by cubres
LeTs SpAm
[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(12cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -8.342636385018698, xmax = 22.10453829563805, ymin = -19.202391801926474, ymax = 9.571861192979963;  /* image dimensions */
pen ttqqqq = rgb(0.2,0,0); pen wvvxds = rgb(0.396078431372549,0.3411764705882353,0.8235294117647058); pen wwccff = rgb(0.4,0.8,1); pen ttffcc = rgb(0.2,1,0.8); pen ccwwff = rgb(0.8,0.4,1); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); 
 /* draw figures */
draw((0.36318383958057093,4.154887985795261)--(-0.6571422088705283,-5.117548735216507), linewidth(0.7) + ttqqqq); 
draw((-0.6571422088705283,-5.117548735216507)--(8.68,-4.66), linewidth(0.7) + ttqqqq); 
draw((8.68,-4.66)--(0.36318383958057093,4.154887985795261), linewidth(0.7) + ttqqqq); 
draw(circle((2.4809144209628675,-2.1642204929126425), 2.796198553868902), linewidth(0.7) + wvvxds); 
draw(circle((3.8168243046372794,-0.9175018011374343), 6.136511273717033), linewidth(0.7) + wvvxds); 
draw(circle((1.4220491302717195,0.9953337464413093), 3.3322632992082095), linewidth(0.7) + wvvxds); 
draw((0.36318383958057093,4.154887985795261)--(7.270464769693989,-5.98989158807013), linewidth(0.7) + wwccff); 
draw(circle((3.228685230098349,-4.395498047486284), 4.344890402409415), linewidth(0.7) + wvvxds); 
draw((-0.2985074562530282,-1.858376772832902)--(4.514749641394138,-0.2453039629948295), linewidth(0.7) + ttffcc); 
draw((4.514749641394138,-0.2453039629948295)--(2.617772544652193,-4.957067822545749), linewidth(0.7) + ttffcc); 
draw((2.617772544652193,-4.957067822545749)--(-0.2985074562530282,-1.858376772832902), linewidth(0.7) + ttffcc); 
draw(circle((-2.7952970494669476,0.2006267586689261), 5.060848088891136), linewidth(0.7) + wvvxds); 
draw((1.389697180979825,-1.2926066627978439)--(2.617772544652193,-4.957067822545749), linewidth(0.7) + ccwwff); 
draw((2.2525659983910864,-0.16167426106806954)--(-1.112606871601543,-4.572290289023016), linewidth(0.7) + wrwrwr); 
draw((-1.8933890982991697,1.329770657951845)--(7.270464769693989,-5.98989158807013), linewidth(0.7) + linetype("4 4") + ccwwff); 
draw((-1.8933890982991697,1.329770657951845)--(4.11717186677921,-7.0466585093944225), linewidth(0.7) + ccwwff); 
draw((0.36318383958057093,4.154887985795261)--(4.11717186677921,-7.0466585093944225), linewidth(0.7) + ccwwff); 
draw((-5.953777845649177,-3.7536345426339013)--(0.36318383958057093,4.154887985795261), linewidth(0.7) + wwccff); 
draw((-5.953777845649177,-3.7536345426339013)--(-0.2985074562530282,-1.858376772832902), linewidth(0.7) + wwccff); 
draw((-5.953777845649177,-3.7536345426339013)--(7.270464769693989,-5.98989158807013), linewidth(0.7) + wwccff); 
draw((0.36318383958057093,4.154887985795261)--(-1.112606871601543,-4.572290289023016), linewidth(0.7) + ccwwff); 
 /* dots and labels */
dot((0.36318383958057093,4.154887985795261),dotstyle); 
label("$A$", (0.49039011574325947,4.486179268298825), NE * labelscalefactor); 
dot((-0.6571422088705283,-5.117548735216507),dotstyle); 
label("$B$", (-0.513362895706963,-4.781806870758248), NE * labelscalefactor); 
dot((8.68,-4.66),dotstyle); 
label("$C$", (8.821540110780106,-4.313388798748144), NE * labelscalefactor); 
dot((2.4809144209628675,-2.1642204929126425),linewidth(4pt) + dotstyle); 
label("$I$", (2.5982714397887268,-1.9043815712676047), NE * labelscalefactor); 
dot((2.617772544652193,-4.957067822545749),linewidth(4pt) + dotstyle); 
label("$D$", (2.765563608363764,-4.681431569613226), NE * labelscalefactor); 
dot((4.514749641394138,-0.2453039629948295),linewidth(4pt) + dotstyle); 
label("$E$", (4.6392358964041795,0.036207584202829476), NE * labelscalefactor); 
dot((-0.2985074562530282,-1.858376772832902),linewidth(4pt) + dotstyle); 
label("$F$", (-0.1787785585568889,-1.6032556678325374), NE * labelscalefactor); 
dot((3.8168243046372794,-0.9175018011374337),linewidth(4pt) + dotstyle); 
label("$O$", (3.9366087883890235,-0.6664195238123277), NE * labelscalefactor); 
dot((7.270464769693989,-5.98989158807013),linewidth(4pt) + dotstyle); 
label("$A'$", (7.4162858947497945,-5.718643014778459), NE * labelscalefactor); 
dot((-1.112606871601543,-4.572290289023016),linewidth(4pt) + dotstyle); 
label("$G$", (-0.9817809677170669,-4.313388798748144), NE * labelscalefactor); 
dot((2.108121092570555,-1.0518403679138657),linewidth(4pt) + dotstyle); 
label("$M$", (2.397520837498682,-0.7667948249573502), NE * labelscalefactor); 
dot((2.2525659983910864,-0.16167426106806954),linewidth(4pt) + dotstyle); 
label("$H$", (1.7618105969135414,0.13658288534785193), NE * labelscalefactor); 
dot((1.389697180979825,-1.2926066627978439),linewidth(4pt) + dotstyle); 
label("$T$", (1.5276015609084894,-1.03446229467741), NE * labelscalefactor); 
dot((-1.8933890982991697,1.329770657951845),linewidth(4pt) + dotstyle); 
label("$A_S$", (-2.6881610871824453,1.9098798722432486), NE * labelscalefactor); 
dot((4.11717186677921,-7.0466585093944225),linewidth(4pt) + dotstyle); 
label("$M'$", (4.23773469182409,-6.789312893658698), NE * labelscalefactor); 
dot((-5.953777845649177,-3.7536345426339013),linewidth(4pt) + dotstyle); 
label("$J$", (-5.833253856393142,-3.4769279558729567), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */

[/asy]
This post has been edited 1 time. Last edited by Dr_Vex, Jun 26, 2020, 9:29 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MP8148
888 posts
#19 • 2 Y
Y by Mango247, cubres
[asy]
size(8cm);
defaultpen(fontsize(8.5pt));

pair A = dir(125), B = dir(210), C = dir(330), O = origin, A1 = 2O-A, I = incenter(A,B,C), D = foot(I,B,C), E = foot(I,C,A), F = foot(I,A,B), T = foot(D,E,F), M = (E+F)/2, G = intersectionpoints(unitcircle,circumcircle(A1,E,F))[0], H = T+dir(G--T)*abs(E-T)*abs(F-T)/abs(G-T), J = extension(A1,G,E,F), N = dir(270), K = intersectionpoints(unitcircle,circumcircle(A,E,F))[1], L = intersectionpoint(unitcircle,A+dir(A--T)*0.0069--A+dir(A--T)*69);

draw(circumcircle(G,E,F)^^circumcircle(A,M,G));
draw(A--B--C--A--L^^unitcircle);
draw(H--G, dashed);
draw(A--J--E^^A1--J, blue);
draw(circumcircle(A,E,F));
draw(E--D--F^^T--D, gray);

dot("$A$", A, dir(90));
dot("$B$", B, dir(250));
dot("$C$", C, dir(330));
dot("$E$", E, dir(60));
dot("$F$", F, dir(135));
dot("$T$", T, dir(270));
dot("$M$", M, dir(315));
dot("$G$", G, dir(225));
dot("$H$", H, dir(45));
dot("$J$", J, dir(225));
dot("$A'$", A1, dir(315));
dot("$K$", K, dir(150));
dot("$L$", L, dir(240));
dot("$D$", D, dir(45));
[/asy]
Redefine $T$ be the point on $\overline{EF}$ such that $\overline{DT} \perp \overline{EF}$. Let $L = \overline{AT} \cap (ABC)$ and $K = (AEF) \cap (ABC)$.

By radical axis $\overline{AK}$, $\overline{EF}$, and $\overline{A'G}$ concur at a point $J$, which lies on $(AMG)$ from $\angle AGJ = \angle AMJ = 90^\circ$. It is well-known that $KBLC$ is harmonic, so $$-1  = (K,L;B,C) \overset{A}{=} (J,T;F,E).$$This implies $$\text{Pow}(T,(A'EF)) = ET \cdot FE = MT \cdot JT = \text{Pow}(T,(AMG)),$$so $T$ lies on the radical axis $\overline{HG}$ of $(A'EF)$ and $(AMG)$ as desired. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
snakeaid
125 posts
#20 • 2 Y
Y by Didier, cubres
Redefine $T$ to be the foot of the perpendicular from $D$ to $\overline{EF}$. We will prove that it lies on the radical axis of $(A'EF)$ and $(AMG)$. Let $R$ be the second intersection of $(ABC)$ and $(AEF)$. Then it's well-known that $R,T,I,A'$ are collinear. Notice that by radical center $A'G$, $AR$, $EF$ are concurrent, say at $S$. Then $\angle AGS=180^{\circ}-\angle AGA'=90^{\circ}=\angle SMA \implies S \in (AMG)$. Also $\angle SRI-180^{\circ}-\angle ARI=90^{\circ}=\angle SMI \implies SRMI$ is cyclic. Then $\text{Pow}(T,(AMG))=ST\cdot TM=RT\cdot TI=FT \cdot TE=\text{Pow}(T,(A'EF))$, as desired.
This post has been edited 1 time. Last edited by snakeaid, Dec 14, 2020, 8:55 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IndoMathXdZ
694 posts
#21 • 1 Y
Y by cubres
Funny problem.
Redefine $T$ to be the foot of perpendicular from $D$ to $EF$. We will prove $G,T,H$ are collinear instead, i.e.
\[ \text{Pow}_T (AMG) = \text{Pow}_T (EFA') \]Apparently, $\text{Pow}_T (EFA') = TE \cdot TF$, and by letting $EF \cap (AMG) = J$, we have $\text{Pow}_T (AMG) = TM \cdot TJ$.
Therefore, we need to prove
\[ TE \cdot TF = TM \cdot TJ \]which is equivalent to proving $(E,F;T,J) = -1$. Let $AJ \cap (ABC) = K$.

Claim 01. $J,G,A'$ collinear.
Proof. Let $A'G \cap (AMG) = J'$. Since $A'$ is the antipode of $A$, we have $\measuredangle AGA' = 90^{\circ}$, and hence $\measuredangle AGJ' = 90^{\circ} = \measuredangle AMJ' = \measuredangle AMJ$, proving $J' \equiv J$.

Claim 02. $K,D,Y$ collinear.
Proof. By our previous claim, $J$ lies on the radical axis of $(ABC)$ and $(EFA')$, and therefore,
\[ JK \cdot JA = JF \cdot JE \]which means $K = (AEF) \cap (ABC)$. Therefore, we know that $K$ is the incenter Miquel Point. Therefore, if $X$ and $Y$ are the midpoint of arcs $BC$ containing $A$ and not containing $A$ respectively, we have $K,D,Y$ collinear. By letting $AT \cap (ABC) = L$, we have $L,D,X$ by a well known lemma.
Thus,
\[ -1 = (X,Y;B,C) \overset{D}{=} (L,K;C,B) \overset{A}{=} (T,J;E,F) \]which is what we wanted.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
VulcanForge
626 posts
#22 • 1 Y
Y by cubres
Redefine $T$ to be the foot from $D$ to $EF$ and $H$ to be the second intersection of $GT$ with $(A'EF)$, and we will show $AGMH$ cyclic. Add in the point $S=(AEF) \cap (ABC)$ and let $L= AS \cap EF$. We will in fact show $G,M,H$ lie on the circle with diameter $AL$.

First note $M$ lies on that circle since $AM \perp ML$ for obvious reasons. By radical axis on $(ABC),(A'EF),(AEF)$ we get $A'GL$ collinear hence $AG \perp GL$. It remains to show $AH \perp HL$. Indeed, letting $LH$ intersect $(A'EF)$ again at $K$ and noting $KH$ and $AS$ intersect on the radical axis of $(AEF)$ and $(A'EF)$, we have $ASKH$ cyclic and thus $AH \perp HK$ as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GeronimoStilton
1521 posts
#23 • 4 Y
Y by Mango247, Mango247, Mango247, cubres
Solution with hint from @above.

It is well-known that $T,I,A'$ are collinear along with $(AEF)\cap (ABC)=K\ne A$. Let line $EF$ intersect $(AGM)$ again at point $J$. Observe that $AJ$ is the diameter of $(AGM)$. Moreover, since $\angle A'GA=90^\circ=\angle AGJ$, $A',G,J$ are collinear. So by radical axis theorem on $(AEF)$, $(ABC)$, $(A'EF)$, $K$ lies on $AJ$.

Now $JT\cdot JM = JK\cdot JA=JE\cdot JF$, implying $(JT;EF)$ harmonic. It is well-known that $TF\cdot TE=TJ\cdot TM$ then. This implies the desired, since $T$ must lie on the radical axis of $(AHMGJ)$ and $(A'GFHE)$.

Sketch for second well-known part
This post has been edited 1 time. Last edited by GeronimoStilton, Apr 6, 2021, 9:27 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
dwip_neel
40 posts
#25 • 1 Y
Y by cubres
deleted as required
This post has been edited 1 time. Last edited by dwip_neel, Aug 31, 2021, 11:09 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathaddiction
308 posts
#27 • 1 Y
Y by cubres
[asy]
size(8cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -9.664267992854413, xmax = 8.910818228494016, ymin = -5.8993890210618805, ymax = 5.012432929595713;  /* image dimensions */
pen qqwuqq = rgb(0,0.39215686274509803,0); pen fuqqzz = rgb(0.9568627450980393,0,0.6); pen zzttff = rgb(0.6,0.2,1); pen ffvvqq = rgb(1,0.3333333333333333,0); 
 /* draw figures */
draw(circle((-1.7768158352132182,-0.7516822995618229), 1.7652367603555659), linewidth(0.8) + qqwuqq); 
draw(circle((-0.5651633926932255,-0.2764813199926565), 3.9584030633428173), linewidth(0.8) + fuqqzz); 
draw(circle((-2.3384079414166115,1.08415885457241), 1.919817270343408), linewidth(0.8) + qqwuqq); 
draw(circle((-1.2225909183064403,-2.5634401570264176), 3.1274391741754353), linewidth(0.8) + qqwuqq); 
draw(circle((-4.48752331183388,0.8510717143897553), 2.6078141261627823), linewidth(0.8) + qqwuqq); 
draw((-4.257045907673084,1.1514396538248008)--(-1.7768158352132182,-0.7516822995618229), linewidth(0.8) + linetype("4 4") + zzttff); 
draw((-1.8423521740436113,-2.5157020864132407)--(-2.5675883939229163,-0.1449093096982009), linewidth(0.8) + zzttff); 
draw((-6.075046564922025,-1.2178566162970728)--(-0.5151604411450491,0.4829376770825319), linewidth(0.8) + linetype("4 4") + ffvvqq); 
draw((-6.075046564922025,-1.2178566162970728)--(1.769673214613549,-3.472962639985313), linewidth(0.8) + linetype("4 4") + ffvvqq); 
draw((-6.075046564922025,-1.2178566162970728)--(-2.9,2.92), linewidth(0.8) + linetype("4 4") + ffvvqq); 
draw((-2.9,2.92)--(-3.88,-2.44), linewidth(1.2) + blue); 
draw((-3.88,-2.44)--(2.58,-2.68), linewidth(1.6) + blue); 
draw((2.58,-2.68)--(-2.9,2.92), linewidth(1.6) + blue); 
 /* dots and labels */
dot((-2.9,2.92),dotstyle); 
label("$A$", (-2.8131431421552735,3.138265037307195), NE * labelscalefactor); 
dot((-3.88,-2.44),dotstyle); 
label("$B$", (-3.791875263683722,-2.234349587253223), NE * labelscalefactor); 
dot((2.58,-2.68),dotstyle); 
label("$C$", (2.6635919208656196,-2.463414551866264), NE * labelscalefactor); 
dot((-1.8423521740436113,-2.5157020864132407),linewidth(4pt) + dotstyle); 
label("$D$", (-1.7511146698584463,-2.3592941134057908), NE * labelscalefactor); 
dot((-0.5151604411450491,0.4829376770825319),linewidth(4pt) + dotstyle); 
label("$E$", (-0.4391971452564833,0.639374514255838), NE * labelscalefactor); 
dot((-3.513267319342443,-0.4341967670158078),linewidth(4pt) + dotstyle); 
label("$F$", (-3.437865772918113,-0.27688534419632627), NE * labelscalefactor); 
dot((-0.5651633926932255,-0.2764813199926565),linewidth(4pt) + dotstyle); 
label("$O$", (-0.4808453206406726,-0.11029264265956915), NE * labelscalefactor); 
dot((1.769673214613549,-3.472962639985313),dotstyle); 
label("$A'$", (1.8514525008739282,-3.2547298841658603), NE * labelscalefactor); 
dot((-4.241058303247535,-1.7450695599165347),linewidth(4pt) + dotstyle); 
label("$G$", (-4.166708842141426,-1.588802868798289), NE * labelscalefactor); 
dot((-2.014213880243746,0.02437045503336205),linewidth(4pt) + dotstyle); 
label("$M$", (-1.8135869329347303,0.2853650234902291), NE * labelscalefactor); 
dot((-1.7768158352132182,-0.7516822995618229),linewidth(4pt) + dotstyle); 
label("$I$", (-1.6886424067821624,-0.5892466595777459), NE * labelscalefactor); 
dot((-6.075046564922025,-1.2178566162970728),linewidth(4pt) + dotstyle); 
label("$K$", (-5.999228559045755,-1.047376588803828), NE * labelscalefactor); 
dot((-4.257045907673084,1.1514396538248008),linewidth(4pt) + dotstyle); 
label("$J$", (-4.166708842141426,1.3265694080949613), NE * labelscalefactor); 
dot((-2.5675883939229163,-0.1449093096982009),linewidth(4pt) + dotstyle); 
label("$T$", (-2.479957739081759,0.01465188349299872), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
[/asy]

Let $EF$ meet $(AMG)$ at $K$. Notice that
$$\angle AGK=\angle AMK=90^{\circ}=\angle AGA'$$hence $K,G,A'$ are collinear. Let $AK$ meet $(ABC)$ at $J$, then $$KJ\times KA=KG\times KA'=KF\times KE$$Hence $J$ lies on $(AEF)$. Redefine $T$ as the projection of $D$ on $EF$, then
$$\frac{FT}{TE}=\frac{\tan\angle FDT}{\tan\angle TDE}=\frac{\tan\angle BID}{\tan\angle DIC}=\frac{BD}{DC}$$Therefore, $J$ is the center of spiral sim. sending $\overline{FTE}$ to $\overline{BDC}$. So
$$\frac{JF}{JE}=\frac{FB}{EC}=\frac{BD}{DC}=\frac{FT}{TE}$$whichh implies $JT$ is the internal angle bisector of $\angle FJE$, meanwhile since $AF=AE$, $JK$ is the external angle bisector of $\angle FJE$, so $(T,H;F,E)=-1$. Therefore,
$$HF\times HE=HT\times HM\hspace{20pt}(1)$$$$MT\times MH=ME^2\hspace{20pt}(2)$$We now show that $T$ lies on the radical axis of $\Omega_1=(HMG)$ and $\Omega_2=(EFA')$. Indeed, for each point $X$ on the plane define
$$f(X)=Pow(X,\Omega_1)-Pow(X,\Omega_2)$$Then by linearity of PoP,
$$MHf(T)=MTf(H)+HTf(M)=MT\cdot HF\cdot HE-HT\cdot ME^2=MT\cdot HT\cdot HM-HT\cdot MT\cdot MH=0$$as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Number1048576
91 posts
#28 • 1 Y
Y by cubres
hint 1
hint 2
solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bryanguo
1032 posts
#29 • 2 Y
Y by channing421, cubres
Great problem. I believe this works.
[asy]
import olympiad;
unitsize(45);
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(0cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -3.4556855291888393, xmax = 7.161644883742675, ymin = -1.975717796255949, ymax = 4.150731345409496;  /* image dimensions */
pen zzwwff = rgb(0.6,0.4,1); pen qqzzff = rgb(0,0.6,1); 

draw((0.7751464073673895,3.3086911070471117)--(0,0)--(4,0)--cycle, linewidth(0.65) + zzwwff); 
 /* draw figures */
draw((0.7751464073673895,3.3086911070471117)--(0,0), linewidth(0.65) + zzwwff); 
draw((0,0)--(4,0), linewidth(0.65) + zzwwff); 
draw((4,0)--(0.7751464073673895,3.3086911070471117), linewidth(0.65) + zzwwff); 
draw(circle((2,1.2765929021365985), 2.3726966594542893), linewidth(0.65) + qqzzff); 
draw(circle((1.3889916156368791,1.1011928091575605), 1.1011928091575605), linewidth(0.65) + qqzzff); 
draw(circle((1.6561974031409439,0.14027251010636455), 1.8064053063692798), linewidth(0.65) + qqzzff); 
draw((0.31682872142499685,1.3523746779608636)--(2.177579263719154,1.8697987707740351), linewidth(0.65)); 
draw((2.177579263719154,1.8697987707740351)--(1.3889916156368791,0), linewidth(0.65)); 
draw((1.3889916156368791,0)--(0.31682872142499685,1.3523746779608636), linewidth(0.65)); 
draw(circle((-0.5115130232317311,2.0364707547989784), 1.8094300525369909), linewidth(0.65) + qqzzff); 
draw((-0.14594123637954498,0.26435496183235674)--(1.2934839092391737,1.909888019820456), linewidth(0.65)); 
draw((1.3889916156368791,0)--(0.9629704469345858,1.5320491096223667), linewidth(0.65)); 
draw((1.3889916156368791,1.1011928091575605)--(-0.0181461969054606,2.524300947194244), linewidth(0.65)); 
draw(circle((1.0820690115021343,2.2049419581023364), 1.1456280673609427), linewidth(0.65) + qqzzff); 
draw((1.3889916156368791,1.1011928091575605)--(3.2248535926326105,-0.7555053027739147), linewidth(0.65)); 
draw((2,-1.0961037573176908)--(-0.0181461969054606,2.524300947194244), linewidth(0.65)); 
draw((0.7751464073673895,3.3086911070471117)--(3.2248535926326105,-0.7555053027739147), linewidth(0.65)); 
draw((0.7751464073673895,3.3086911070471117)--(2,-1.0961037573176908), linewidth(0.65)); 
draw((3.2248535926326105,-0.7555053027739147)--(-1.7981724538308512,0.7642504025508446), linewidth(0.65)); 
draw((-1.7981724538308512,0.7642504025508446)--(0.7751464073673895,3.3086911070471117), linewidth(0.65)); 
draw((-1.7981724538308512,0.7642504025508446)--(0.31682872142499685,1.3523746779608636), linewidth(0.65)); 
draw((0.7751464073673895,3.3086911070471117)--(-0.14594123637954498,0.26435496183235674), linewidth(0.65)); 
draw((-1.7981724538308512,0.7642504025508446)--(1.3889916156368791,1.1011928091575605), linewidth(0.65)); 
draw((0.7751464073673895,3.3086911070471117)--(1.0127252647845169,1.0614144711059215), linewidth(0.65)); 
 /* dots and labels */
dot((0.7751464073673895,3.3086911070471117),dotstyle); 
label("$A$", (0.7995630827824076,3.381460016535215), N * labelscalefactor); 
dot((0,0),dotstyle); 
label("$B$", (0.10138532040368696,-0.1253083835583541), W * labelscalefactor); 
dot((4,0),dotstyle); 
label("$C$", (4.042977334252348,-0.11144763889395265), NE * labelscalefactor); 
dot((1.3889916156368791,1.1011928091575605),linewidth(4pt) + dotstyle); 
label("$I$", (1.4163662203482723,1.1568104978987808), NE * labelscalefactor); 
dot((2,1.2765929021365985),linewidth(4pt) + dotstyle); 
label("$O$", (2.0262389855819363,1.330069806203799), NE * labelscalefactor); 
dot((1.3889916156368791,0),linewidth(4pt) + dotstyle); 
label("$D$", (1.4424106353652614,-0.11837801122615338), E * labelscalefactor); 
dot((2.177579263719154,1.8697987707740351),linewidth(4pt) + dotstyle); 
label("$E$", (2.234150155547958,1.891429965112058), NE * labelscalefactor); 
dot((0.31682872142499685,1.3523746779608636),linewidth(4pt) + dotstyle); 
label("$F$", (0.2659244132029516,1.4478861358512114), NE * labelscalefactor); 
dot((3.2248535926326105,-0.7555053027739147),dotstyle); 
label("$A'$", (3.259845260713666,-0.8737885954360328), NE * labelscalefactor); 
dot((-0.14594123637954498,0.26435496183235674),linewidth(4pt) + dotstyle); 
label("$G$", (-0.2885053733731066,0.1380457650652736), SW * labelscalefactor); 
dot((1.2472039925720753,1.6110867243674494),linewidth(4pt) + dotstyle); 
label("$M$", (1.29854989070086,1.6835187951460362), NE * labelscalefactor); 
dot((1.2934839092391737,1.909888019820456),linewidth(4pt) + dotstyle); 
label("$H$", (1.319341007697462,1.967664060766266), NE * labelscalefactor); 
dot((0.9629704469345858,1.5320491096223667),linewidth(4pt) + dotstyle); 
label("$T$", (0.91737941242982,1.6211454441562296), NE * labelscalefactor); 
dot((-0.0181461969054606,2.524300947194244),linewidth(4pt) + dotstyle); 
label("$R$", (-0.12910680973248986,2.5498153366711276), N * labelscalefactor); 
dot((2,-1.0961037573176908),linewidth(4pt) + dotstyle); 
label("$J$", (1.9915871239209328,-1.1341679567104709), S * labelscalefactor); 
dot((-1.7981724538308512,0.7642504025508446),linewidth(4pt) + dotstyle); 
label("$K$", (-1.8379339884368798,0.6647540623125291), W * labelscalefactor); 
dot((1.0127252647845169,1.0614144711059215),linewidth(4pt) + dotstyle); 
label("$L$", (1.019389313553884,1.1338614601131567), NW * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
 [/asy]
Define $R$ the $A$-Sharky Devil point of $\triangle ABC.$ Let $J$ be the midpoint of $\widehat{BC}$ not containing $A,$ and $K$ is the concurrence point of radical axes on $(AFE), (GFE),$ and $(ABC).$

Note $AMGK$ is then a cyclic quadrilateral with diameter $AK$ since $\angle AMK = \angle AGK = 90^\circ.$ Extend $AT$ to meet $(AMG)$ at $L.$ By Thales Theorem $\angle ALK = 90^\circ.$ From the problem statement, $T$ lies on the radical axis of $(AMG)$ and $(A'EF).$ Therefore $TL \cdot TA = TF \cdot TE,$ and by the converse of Power of a Point, $AFLE$ is cyclic. Since $AI$ is a diameter of $(AFE)$ it follows $\angle ALI = 90^\circ,$ so $K,L,I$ are collinear. It follows $T$ is the orthocenter of $\triangle AIK.$

It follows since $IR \perp AK$ that $I,T,R$ are collinear. By the Sharky-Devil Lemma, $DT \perp EF,$ as required.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
VicKmath7
1390 posts
#30 • 1 Y
Y by cubres
Quite nice config geo.
We begin by applying radical axis to $(A'EF),(AEF),(ABC)$. Let $TI \cap (ABC)=R$, so $AR,EF,GA'$ concur at $P$. Since $\angle AGA'= \angle AMF =90$, we have that $P \in (AMG)$ (and it has diameter $AP$). We want $T\in GH$, which the radical axis of $(A'EF)$ and $(AMG)$, so we want $TF \cdot TE=TM \cdot TP \iff (P,T,F,E)=-1$. But note that $PT \cdot PM=PR \cdot PA= PF \cdot PE$, which is sufficient.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
UI_MathZ_25
116 posts
#31 • 1 Y
Y by cubres
Solution in Spanish
This post has been edited 1 time. Last edited by UI_MathZ_25, Jan 16, 2024, 7:03 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Pyramix
419 posts
#32 • 1 Y
Y by cubres
Define $T$ to be the foot of $D$ onto $EF$. We need to show that $T$ has same power w.r.t. circles $(DEF),(AMG),(A'EF)$.

Define $K=MF\cap (AMG)$. Since $AM\perp EF$, we have $\angle AMK=90^\circ$, which means that $K$ is the antipode of $A$ in $(AMG)$. Since $A'$ is also the antipode of $A$ in $(ABC)$, we have $\angle AGK=\angle AGA'=90^\circ$. Hence, $A',K,G$ are collinear.

Claim 1: $(K,T;E,F)=-1\Leftrightarrow T\in HG$.
Proof. \[(K,T;E,F)=-1\Leftrightarrow MT\cdot MK=ME^2\Leftrightarrow TM\cdot TK=TE\cdot TF\]So, $T$ has equal power from circles $(AMG),(DEF)$. However, $T$ also has equal power from circles $(A'EF),(DEF)$ as $T\in EF$ by definition. Hence, $T$ has equal power from all three circles (as required), which means $T\in HG$. $\blacksquare$

Define $S=(AEF)\cap (ABC)$ to be the Sharkydevil Point in $ABC$.

Claim 2: $K,S,A$ are collinear and $A',I,S,T$ collinear.
Proof. Simply note that $K$ lies on the radical axes of circles $(AEF),(A'EF)$ and $(A'EF),(ABC)$ as established. Hence, $K$ lies on the radical axis of $(ABC),(AEF)$, which is line $AS$. So, $K\in AS$.
Note that $\angle ASI=90^\circ=\angle ASA'$, which means $S,I,A'$ are collinear. Invert about the incircle to see that $(ABC)$ goes to ninepoint circle of the intouch triangle and $(AEF)$ goes to line $EF$, which means $S$ goes to $T$. So, $I,S,T$ are collinear as well. $\blacksquare$

Finally, note that taking perspective at $S$ gives $(K,T;E,F)=(A,I;E,F)=-1$, which finishes the problem by Claim 1.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
YaoAOPS
1541 posts
#33 • 2 Y
Y by MS_asdfgzxcvb, cubres
the fish are dying


Let $S$ be the Sharkey-Devil point, so $(ASEFI), (DEF), (GFEA'), (ABC)$ share a radical center $T'$. Since $\measuredangle AGT' = \measuredangle AMT' = 90^\circ$, $T'$ lies on $(AMM')$. We want to show that $T$ lies on the radical axis of $(AMG)$ and $(AEIF)$, or that $TF \cdot TE = TM \cdot TM'$, or that $M'$ is harmonic conjugate of $M$ in $EF$. Then, since $S$ lies on $TI$, and $AS \perp TI, AM \perp MM'$, $T$ is the orthocenter of $\triangle AM'I$. As such, $AT \perp MI$, so the polar of $M'$ wrt the incircle is $AT$ and we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ilikeminecraft
656 posts
#34 • 1 Y
Y by cubres
Define $T$ to be the foot from $D$ to $EF.$
Draw in $K,$ the $A$-sharkydevil point.
By Radax on $(AEFI), (EFGA’), (ABC),$ we have that $AK, EF, A’G$ concur at a point $X.$
Since $\angle AGX’ = 180-\angle AGA’ = 90 = \angle AMF = \angle AMX’,$ we have $AMGX’$ is cyclic.
Observe that $-1= (AI;EF) \stackrel K= (X’T;EF).$
It is well known that this implies $TM\cdot TX’ = TE\cdot TF.$
Thus, $T$ is the radical center of $(AEFI), (AMGX’), (DEF),$ which implies $T,G,H$ are collinear.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cj13609517288
1922 posts
#35 • 1 Y
Y by cubres
Full diagram https://www.geogebra.org/calculator/dyrupagm
Diagram without the fluff https://www.geogebra.org/calculator/dszqgp3x

Let $K$ be the $A$-Sharkydevil point. Then radax on $(AGM),(AEF),(A'EF)$ gives that $T$ lies on the line through $A$ and $(AMG)\cap(AEF)$. The inverse of the latter point around the incircle is $(AMG)\cap EF$, let's call it $X$. Then it suffices to show that $XIMK$ are concyclic (since $K$ and $T$ are well known to be inverses). This is equivalent to $\angle XKI=90^\circ$, which is equivalent to $AKX$ collinear. Now redefine $X=AK\cap EF$, we will show that it lies on $(AMG)$. But by radax on $(ABC),(AEF),(A'EF)$ we get that $X$ lies on $GA'$ too. So then $\angle AGX=90^\circ=\angle AMX$, done. $\blacksquare$
This post has been edited 1 time. Last edited by cj13609517288, Apr 24, 2025, 7:57 PM
Z K Y
N Quick Reply
G
H
=
a