Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Feet of perpendiculars to diagonal in cyclic quadrilateral
jl_   0
22 minutes ago
Source: Malaysia IMONST 2 2023 (Primary) P6
Suppose $ABCD$ is a cyclic quadrilateral with $\angle ABC = \angle ADC = 90^{\circ}$. Let $E$ and $F$ be the feet of perpendiculars from $A$ and $C$ to $BD$ respectively. Prove that $BE = DF$.
0 replies
jl_
22 minutes ago
0 replies
Combinatoric
spiderman0   1
N 4 hours ago by MathBot101101
Let $ S = \{1, 2, 3, \ldots, 2024\}.$ Find the maximum positive integer $n \geq 2$ such that for every subset $T \subset S$ with n elements, there always exist two elements a, b in T such that:

$|\sqrt{a} - \sqrt{b}| < \frac{1}{2} \sqrt{a - b}$
1 reply
spiderman0
Yesterday at 7:46 AM
MathBot101101
4 hours ago
Combinatorial proof
MathBot101101   10
N 5 hours ago by MathBot101101
Is there a way to prove
\frac{1}{(1+1)!}+\frac{2}{(2+1)!}+...+\frac{n}{(n+1)!}=1-\frac{1}{{n+1)!}
without induction and using only combinatorial arguments?

Induction proof wasn't quite as pleasing for me.
10 replies
MathBot101101
Apr 20, 2025
MathBot101101
5 hours ago
Simiplifying a Complicated Expression
phiReKaLk6781   6
N 5 hours ago by lbh_qys
Simplify: $ \frac{a^3}{(a-b)(a-c)}+\frac{b^3}{(b-a)(b-c)}+\frac{c^3}{(c-a)(c-b)}$
6 replies
phiReKaLk6781
Mar 15, 2010
lbh_qys
5 hours ago
Geometry Angle Chasing
Sid-darth-vater   2
N Yesterday at 10:21 PM by Sid-darth-vater
Is there a way to do this without drawing obscure auxiliary lines? (the auxiliary lines might not be obscure I might just be calling them obscure)

For example I tried rotating triangle MBC 80 degrees around point C (so the BC line segment would now lie on segment AC) but I couldn't get any results. Any help would be appreciated!
2 replies
Sid-darth-vater
Monday at 11:50 PM
Sid-darth-vater
Yesterday at 10:21 PM
Absolute value
Silverfalcon   8
N Yesterday at 7:46 PM by zhoujef000
This problem seemed to be too obvious.. And I think I"m wrong.. :D

Problem:

Consider the sequence $x_0, x_1, x_2,...x_{2000}$ of integers satisfying

\[x_0 = 0, |x_n| = |x_{n-1} + 1|\]

for $n = 1,2,...2000$.

Find the minimum value of the expression $|x_1 + x_2 + ... x_{2000}|$.

My idea

Pretty sure I'm wrong but where did I go wrong?
8 replies
Silverfalcon
Jun 27, 2005
zhoujef000
Yesterday at 7:46 PM
Tetrahedrons and spheres
ReticulatedPython   3
N Yesterday at 7:26 PM by vanstraelen
Let $OABC$ be a tetrahedron such that $\angle{AOB}=\angle{AOC}=\angle{BOC}=90^\circ.$ A sphere of radius $r$ is circumscribed about tetrahedron $OABC.$ Given that $OA=a$, $OB=b$, and $OC=c$, prove that $$r^2+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \ge \frac{9\sqrt[3]{4}}{4}$$with equality at $a=b=c=\sqrt[3]{2}.$
3 replies
ReticulatedPython
Monday at 6:39 PM
vanstraelen
Yesterday at 7:26 PM
Σ to ∞
phiReKaLk6781   3
N Yesterday at 6:12 PM by Maxklark
Evaluate: $ \sum\limits_{k=1}^\infty \frac{1}{k\sqrt{k+2}+(k+2)\sqrt{k}}$
3 replies
phiReKaLk6781
Mar 20, 2010
Maxklark
Yesterday at 6:12 PM
Geometric inequality
ReticulatedPython   0
Yesterday at 5:12 PM
Let $A$ and $B$ be points on a plane such that $AB=n$, where $n$ is a positive integer. Let $S$ be the set of all points $P$ such that $\frac{AP^2+BP^2}{(AP)(BP)}=c$, where $c$ is a real number. The path that $S$ traces is continuous, and the value of $c$ is minimized. Prove that $c$ is rational for all positive integers $n.$
0 replies
ReticulatedPython
Yesterday at 5:12 PM
0 replies
Inequalities
sqing   27
N Yesterday at 3:51 PM by Jackson0423
Let $   a,b    $ be reals such that $  a^2+ab+b^2 =3$ . Prove that
$$ \frac{4}{ 3}\geq \frac{1}{ a^2+5 }+ \frac{1}{ b^2+5 }+ab \geq -\frac{11}{4 }$$$$ \frac{13}{ 4}\geq \frac{1}{ a^2+5 }+ \frac{1}{ b^2+5 }+ab \geq -\frac{2}{3 }$$$$ \frac{3}{ 2}\geq  \frac{1}{ a^4+3 }+ \frac{1}{ b^4+3 }+ab \geq -\frac{17}{6 }$$$$ \frac{19}{ 6}\geq  \frac{1}{ a^4+3 }+ \frac{1}{ b^4+3 }-ab \geq -\frac{1}{2}$$Let $   a,b    $ be reals such that $  a^2-ab+b^2 =1 $ . Prove that
$$ \frac{3}{ 2}\geq \frac{1}{ a^2+3 }+ \frac{1}{ b^2+3 }+ab \geq \frac{4}{15 }$$$$ \frac{14}{ 15}\geq \frac{1}{ a^2+3 }+ \frac{1}{ b^2+3 }-ab \geq -\frac{1}{2 }$$$$ \frac{3}{ 2}\geq \frac{1}{ a^4+3 }+ \frac{1}{ b^4+3 }+ab \geq \frac{13}{42 }$$$$ \frac{41}{ 42}\geq \frac{1}{ a^4+3 }+ \frac{1}{ b^4+3 }-ab \geq -\frac{1}{2 }$$
27 replies
sqing
Apr 16, 2025
Jackson0423
Yesterday at 3:51 PM
Problem of the Week--The Sleeping Beauty Problem
FiestyTiger82   1
N Yesterday at 3:24 PM by martianrunner
Put your answers here and discuss!
The Problem
1 reply
FiestyTiger82
Yesterday at 2:30 PM
martianrunner
Yesterday at 3:24 PM
H not needed
dchenmathcounts   46
N Apr 11, 2025 by endless_abyss
Source: USEMO 2019/1
Let $ABCD$ be a cyclic quadrilateral. A circle centered at $O$ passes through $B$ and $D$ and meets lines $BA$ and $BC$ again at points $E$ and $F$ (distinct from $A,B,C$). Let $H$ denote the orthocenter of triangle $DEF.$ Prove that if lines $AC,$ $DO,$ $EF$ are concurrent, then triangle $ABC$ and $EHF$ are similar.

Robin Son
46 replies
dchenmathcounts
May 23, 2020
endless_abyss
Apr 11, 2025
H not needed
G H J
Source: USEMO 2019/1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mogmog8
1080 posts
#35 • 5 Y
Y by centslordm, teomihai, megarnie, crazyeyemoody907, Rounak_iitr
Let $X=\overline{AC}\cap\overline{DO}\cap\overline{EF},Y=\overline{AC}\cap\overline{BD},Z=\overline{DO}\cap\overline{BC},$ and $D'$ the reflection of $D$ in $O.$ We see $\angle EHF=\angle 180-\angle EDF=\angle CBA.$ Notice $D$ is the Miquel point of $BEXZ$ so $D$ lies on $(DFX).$ Hence, $$\angle YBC=\angle DD'F=90-\angle D'DF=90-\angle YCB$$so $\overline{AC}\perp\overline{BD}.$ Therefore, $$\angle ACB=90-\angle CBD=90-\angle FED=\angle HFE.$$$\square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ALM_04
85 posts
#36
Y by
Since, $BEDF$ is a cyclic quadrilateral.
$$\measuredangle{FHE}=\measuredangle{EDF}=\measuredangle{EBF}=\measuredangle{ABC}$$
Let $X=\overline{EF}\cap\overline{AC}\cap\overline{DO}$.
$\measuredangle{DCX}=\measuredangle{DCA}=\measuredangle{DBA}=\measuredangle{DBE}
=\measuredangle{DFE}=\measuredangle{DFX}\implies DXFC$ is a cyclic quadrilateral.

Now,
Using the above thing and the fact that $O$ is the circumcenter of $DBF$. It can be shown that $\overline{CA}\perp \overline{BD}$.
Hence, $\measuredangle{EFH}=90^{\circ}-\measuredangle{DEF}=90^{\circ}-\measuredangle{DBF}=\measuredangle{BCA}$ which proves that $ABC$ and $EHF$ are similar. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
signifance
140 posts
#37
Y by
Let the concurrence point be P. We make a couple of observations:
\begin{itemize}
\item DAC=DBF=DEF,ACD=EBD=EFD\implies ACD\sim EFD\implies ABC=180-ADC=180-EDF=EHF
\item DFP=ACD=DCP,DEP=DAC=DAP, so we derive those two cyclic quads.
\item ACB=ODF=90-DBC\implies AC\perp BD
\item EFH=90-DEF=90-DAC=ADB=ACB
\end{itemize}
By AA similarity we get the desired conclusion.

\textbf{Remark.} It's not easy to conjecture AC\perp BD, but it would be wanted from the last item in our list (we'd want 90-DAC=90-DEF=EFH=ACB=ADB).

btw does anyone have recommendations on how to get the itemize thing to work, I've been working on overlefa with \usepackage[s3xy]{evan} which makes it work but idk how to on aops
This post has been edited 1 time. Last edited by signifance, Sep 23, 2023, 5:48 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
naonaoaz
329 posts
#38
Y by
Let $P = \overline{AC} \cap \overline{EF}$.
Claim: $AEPD$ and $CPDF$ are cyclic.
Proof:
\[\angle EPA = \angle CPF = 180^{\circ} - \angle PCF - \angle CFP = \angle BCA - \angle BFE\]\[ = \angle BDE + \angle EDA - \angle BFE = \angle EDA\]$CPDF$ follows similarly. $\square$

Let $\angle A$ and $\angle B$ denote the angles at $A$ and $B$ of cyclic quadrilateral $ABCD$. Notice that $\angle EDF = 180^{\circ} - \angle B$, so $\angle EHF = \angle ABC$. It suffices to show that $\angle EFH = \angle BCA$.

Now if we let $\angle BAC = \alpha$, we get $\angle FED = \angle A - \alpha$, so $\angle EFH = 90^{\circ} - \angle A + \alpha$.
Claim:
\[\alpha = \frac{90^{\circ}+\angle A - \angle B}{2}\]which finishes since then $\angle BCA = 180^{\circ} - \angle B - \alpha = \angle EFH$.
Proof:
\[\angle EFD = \angle EBD = \angle ABD = \angle ACD = 180^{\circ} - \angle CAD - \angle ADC\]\[\implies \angle EFD = 180^{\circ} - (\angle A - \alpha)- (180^{\circ} - \angle B) = \angle B - \angle A + \alpha\]\[\implies EDO = 90^{\circ} - \angle EFD = 90+\angle A-\angle B- \alpha\]Since $AEPD$ cyclic, $\alpha = \angle EAP = \angle EDP = \angle EDO$, which finishes. $\square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ezpotd
1259 posts
#39
Y by
Observe that $D$ is the orthocenter of $EHF$, so it suffices to prove that $ACX$ and $EFD$ are similar where $X$ is the orthocenter of $ABC$.

Our main claim is that $D$ is the reflection of $X$ over $AC$. To see this, animate $O$ linearly along the perpendicular bisector of $BD$. Then $DEFO$ is similar to a fixed configuration, so $EF \cap DO$ moves linearly.

It is easy to see that when $O$ is the circumcenter of $ABCD$, we have $EF \cap DO$ lying on $AC$. If $BD$ is not perpendicular to $AC$, then we can choose some point $O$ such that the entire line segment $DO$ is parallel to $AC$, so $EF \cap DO$ does NOT lie on $AC$, so the line that $EF \cap DO$ moves along is never on $AC$ unless $AC = EF$, which we can discard. As a result, $BD$ must be perpendicular to $AC$ and $X$ is the desired reflection point.

Now it is easy to see the desired result, observe $ACX$ is similar to $CAD$, which is always similar to $EFD$ as we animate $O$ along the perpendicular bisector.
This post has been edited 2 times. Last edited by ezpotd, Nov 24, 2023, 6:34 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ihatemath123
3445 posts
#40
Y by
Claim: $\triangle DEF \sim \triangle DAC$.

Proof: this is true even without the concurrency information. We have
\[\angle DEA = \angle DBE = \angle DFB = \angle DFC. \]Furthermore, we have
\[\angle EDF = \angle EBF = 180^{\circ} - \angle EBC = \angle ADC, \]so $\angle EDA = \angle FDC$.

Thus, $\triangle DEA \sim \triangle DFC$, so $\triangle DEF \sim \triangle DAC$.

Let $X$ be the concurrency point in the problem, let $D'$ and $D''$ be the antipodes of $D$ WRT $(DEF)$ and $(ABCD)$, respectively, and let $Y$ be the intersection of $\overline{DG}$ with $\overline{AC}$.
Because of similarity, $\frac{DY}{DG} = \frac{DX}{DD'}$, so $\overline{GD'} \parallel \overline{YX}$.

Because $B$ lies on both $(DAC)$ and $(DEF)$, we have that $\angle DBG = \angle DBD' = 90^{\circ}$, hence $D$, $B$ and $G$ are collinear. It remains to prove that $B \neq G$; then, from there, we know that $B$ is the unique point which lies on $(ACD)$ satisfying $\overline{BG} \parallel \overline{AC}$, which means $B$ is the reflection of the orthocenter of $\triangle ACD$ across $\overline{AC}$, which means $\triangle ABC \sim \triangle EHF$ as desired.

Proof: Assume, for the sake of contradiction, that $B = G$; then, $G$ would lie on $(EDF)$. Since $\angle DCG = \angle DAG = 90^{\circ}$, line $AC$ would be the Simson line in $(DEF)$ WRT $D$ and $\triangle BEF$. So, $X$ would be the foot from $D$ to $\overline{EF}$, implying $DE = DF$, implying $DAC$ collinear, which is a contradiction.

remark: dealing with the edge case at the end was by far the most interesting part of this problem :(
This post has been edited 2 times. Last edited by ihatemath123, Jan 29, 2024, 6:34 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
HamstPan38825
8857 posts
#41
Y by
The key is the following:

Claim. $\triangle DAE \sim \triangle DCF$.

Proof. $\angle EAD = \angle FCD$ is evident. Other equality comes from $BEDF$ cyclic. $\blacksquare$

So $\triangle DAC \sim \triangle DEF$ by spiral similarity, ergo for $G = \overline{AC} \cap \overline{EF}$, $GEAD$ and $GFCD$ are cyclic. So $\angle EFD = \angle ACD$ and $\angle FED = \angle CAD$. Then it suffices to show that $ABCD$ is orthodiagonal.

To see this, let $D'$ be the $D$-antipode. It suffices to show that $\angle BDD' + \angle AGD = 90^\circ$, but this follows as $\angle AGD = \angle AED$ and $\angle BDD' = \angle BED - 90^\circ$.
This post has been edited 1 time. Last edited by HamstPan38825, Mar 10, 2024, 3:54 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DroneChaudhary
4 posts
#42
Y by
Could someone check my solution...

$\text{Let the perpendicular from } D \text{ to } EF \text{ meet the circle centred at }O \text{ again at }H'$
$\text{We have that }\triangle ABC \sim \triangle EHF \cong \triangle EH'F \text{ and so,}$
$$\angle H'DF = \angle H'EF = \angle BAC = \angle BDC \text{ with } \angle CBD = \angle FBD = \angle FH'D$$$$\implies \text{ a spiral similarity centred at } D \text{ mapping } (ABCD) \text{ to }(EH'FD)$$$\text{We get that }AC \perp BD$
$\text{Now let } AC \cap EF = T;  \text{ then } \angle DCA = \angle DFE = \angle DFT \implies (DCTF) \text{ and hence we have }$
$$\angle CDT = \angle CFT = \angle BFE = \angle BDC = \angle H'DF = \angle CDO \implies D-O-T \text{ collinear}$$$\text{i.e. AC, DO, EF concurrent }$
This post has been edited 1 time. Last edited by DroneChaudhary, Jun 3, 2024, 1:50 AM
Reason: formatting
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Thapakazi
58 posts
#43 • 1 Y
Y by Rounak_iitr
sobad.

We let the concurrency point be $K$.

Claim: $DAKE$ cyclic.

By immediate angle chase, we get

\[\measuredangle DAC = \measuredangle DBC = \measuredangle DEF = \measuredangle DEK\]
implying the claim. Now notice that,

\[\measuredangle DKF = \measuredangle DKA + \measuredangle AKF =  \measuredangle DEA +  \measuredangle EDA =  \measuredangle DAB.\]
Also,

\[ \measuredangle KFD =  \measuredangle EFD =  \measuredangle EBD =  \measuredangle ABD.\]
So, $\triangle DKF \sim \triangle DAB.$ Now finally as,

\[\measuredangle EHF = - \measuredangle EDF =  -\measuredangle EBF =  \measuredangle EBC =  \measuredangle ABC\]
and,

\[ \measuredangle EFH =  \measuredangle OFD =  \measuredangle ODF =  \measuredangle KDF =  \measuredangle ADB =  \measuredangle ACB\]
we get $\triangle EHF \sim \triangle ABC$ as needed.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
shendrew7
794 posts
#44 • 1 Y
Y by Rounak_iitr
Suppose the concurrency point is $K$ and the center of $(ABCD)$ is $P$. Notice that
\[\measuredangle KFD = \measuredangle ABD = \measuredangle ACD,\]
so $CDFK$ is cyclic. Then
\[\measuredangle POD = \measuredangle CFD = \measuredangle CKD \implies AC \parallel OP \perp BD,\]
so our desired similarity is derived from
\begin{align*}
\measuredangle ABC &= \measuredangle EBF = \measuredangle EDF = \measuredangle FHE. \\
\measuredangle CAB &= 90 - \measuredangle ABD = 90 - \measuredangle EFD = \measuredangle HEF. \\
\measuredangle BCA &= 90 - \measuredangle DBC = 90 - \measuredangle DEF = \measuredangle EFH. \quad \blacksquare
\end{align*}
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
L13832
262 posts
#45 • 1 Y
Y by Rounak_iitr
Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Saucepan_man02
1323 posts
#46
Y by
Pure Angle-Chase:

Claim: $DEAX, DCFX$ are cyclic.
Notice that: $\angle ACD = \angle  ABD = \angle EFD = \angle XFD$ thus $CXFD$ is cyclic.
Notice that: $\angle AXD=\angle CXD=\angle CFD=\angle BFD=\angle BED = \angle AED$ thus $AEXD$ is cyclic.

Notice that: $\angle CDF = \angle CXE = \angle AXE = \angle ADE$ and thus: $\angle ADC = \angle BDF$ which implies $\angle ABC = \angle EHF$.

Notice that: $\angle ACB = \angle XCF = \angle XDF = \angle EDH = \angle EFH$. Similarly, $\angle BAC = \angle HEF$ and thus: $\triangle ABC \sim \triangle EHF$
This post has been edited 2 times. Last edited by Saucepan_man02, Feb 17, 2025, 1:34 PM
Reason: EDIT
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ilikeminecraft
355 posts
#47
Y by
nice and chill
let $X$ be the concurrency point
Note that it is given $BDEF$ is cyclic.
Thus, $\angle DEF = \angle DBC = \angle CAD,$ so $AEXD$ is cyclic.
From here, note that $\angle HEF = \angle HDF = \angle EDX = \angle BAX,$ where the second equality is from the isogonality of circumcenter and orthocenter.
Finally, observe that $\angle ABC = 180 - \angle BEF = 180 - \angle EDF = \angle EHF,$ which finishes!
This post has been edited 1 time. Last edited by Ilikeminecraft, Mar 16, 2025, 10:26 PM
Reason: defineb x
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
EpicBird08
1749 posts
#48
Y by
Let $X$ be the intersection of $AC$ and $EF$. Because $D$ lies on $(BAC)$ and $(BEF),$ by Miquel we also have $AEXD$ and $XCFD$ are cyclic. Thus $\measuredangle FDO = \measuredangle FDX = \measuredangle FCX = \measuredangle BCA.$ If $Y$ is the foot of the altitude from $D$ to $EF,$ then since the circumcenter and orthocenter are isogonal conjugates, we have $\measuredangle FDO = \measuredangle YDE,$ so $\measuredangle YDE = \measuredangle BCA.$ But by orthic triangle we know $\measuredangle YDE = \measuredangle EFH.$ Therefore, $\measuredangle BCA = -\measuredangle HFE.$ Similarly, $\measuredangle CAB = -\measuredangle FEH,$ thus giving that $\triangle ABC$ and $\triangle EHF$ are oppositely similar, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
endless_abyss
41 posts
#49
Y by
This looks complicated at first, but it falls apart when you incorporate the strange concurrence into a series of collinearities :)

Notation:

Let $X$ be the point of concurrence,
Let $T$ be the intersection of $X D$ and the circumcircle of $D E F$


Claim: $D C X E$ is concyclic
$\measuredangle E F D = \measuredangle A B D = \measuredangle A C D$

Claim: $\measuredangle F H E = \measuredangle A B C$
$\measuredangle F H E = \measuredangle E D F = \measuredangle E B F = \measuredangle A B C$

Claim: $\measuredangle B C A = \measuredangle E F H$
This is the part where we use the collinearity of $X - O- D$
first notice that -
$\measuredangle T F D = 90$
and
$\measuredangle E F D = \measuredangle A C B$
and
$\measuredangle X D E = \measuredangle D E F - \measuredangle D C B = \measuredangle D F E - 90$
so,
$\measuredangle A C D + \measuredangle D C B = \measuredangle A C B = \measuredangle H F E$
as required.
And we're done because of $A-A$ similarity.

$\square$

:starwars:
Attachments:
This post has been edited 1 time. Last edited by endless_abyss, Apr 11, 2025, 6:27 AM
Reason: typo
Z K Y
N Quick Reply
G
H
=
a