Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
USAMO 2003 Problem 4
MithsApprentice   72
N 10 minutes ago by endless_abyss
Let $ABC$ be a triangle. A circle passing through $A$ and $B$ intersects segments $AC$ and $BC$ at $D$ and $E$, respectively. Lines $AB$ and $DE$ intersect at $F$, while lines $BD$ and $CF$ intersect at $M$. Prove that $MF = MC$ if and only if $MB\cdot MD = MC^2$.
72 replies
MithsApprentice
Sep 27, 2005
endless_abyss
10 minutes ago
Bosnia and Herzegovina JBMO TST 2009 Problem 1
gobathegreat   1
N 15 minutes ago by FishkoBiH
Source: Bosnia and Herzegovina Junior Balkan Mathematical Olympiad TST 2009
Lengths of sides of triangle $ABC$ are positive integers, and smallest side is equal to $2$. Determine the area of triangle $P$ if $v_c = v_a + v_b$, where $v_a$, $v_b$ and $v_c$ are lengths of altitudes in triangle $ABC$ from vertices $A$, $B$ and $C$, respectively.
1 reply
gobathegreat
Sep 17, 2018
FishkoBiH
15 minutes ago
USAMO 2001 Problem 2
MithsApprentice   53
N 32 minutes ago by lksb
Let $ABC$ be a triangle and let $\omega$ be its incircle. Denote by $D_1$ and $E_1$ the points where $\omega$ is tangent to sides $BC$ and $AC$, respectively. Denote by $D_2$ and $E_2$ the points on sides $BC$ and $AC$, respectively, such that $CD_2=BD_1$ and $CE_2=AE_1$, and denote by $P$ the point of intersection of segments $AD_2$ and $BE_2$. Circle $\omega$ intersects segment $AD_2$ at two points, the closer of which to the vertex $A$ is denoted by $Q$. Prove that $AQ=D_2P$.
53 replies
MithsApprentice
Sep 30, 2005
lksb
32 minutes ago
A=b
k2c901_1   89
N 40 minutes ago by reni_wee
Source: Taiwan 1st TST 2006, 1st day, problem 3
Let $a$, $b$ be positive integers such that $b^n+n$ is a multiple of $a^n+n$ for all positive integers $n$. Prove that $a=b$.

Proposed by Mohsen Jamali, Iran
89 replies
k2c901_1
Mar 29, 2006
reni_wee
40 minutes ago
Strange angle condition and concyclic points
lminsl   129
N 43 minutes ago by Aiden-1089
Source: IMO 2019 Problem 2
In triangle $ABC$, point $A_1$ lies on side $BC$ and point $B_1$ lies on side $AC$. Let $P$ and $Q$ be points on segments $AA_1$ and $BB_1$, respectively, such that $PQ$ is parallel to $AB$. Let $P_1$ be a point on line $PB_1$, such that $B_1$ lies strictly between $P$ and $P_1$, and $\angle PP_1C=\angle BAC$. Similarly, let $Q_1$ be the point on line $QA_1$, such that $A_1$ lies strictly between $Q$ and $Q_1$, and $\angle CQ_1Q=\angle CBA$.

Prove that points $P,Q,P_1$, and $Q_1$ are concyclic.

Proposed by Anton Trygub, Ukraine
129 replies
1 viewing
lminsl
Jul 16, 2019
Aiden-1089
43 minutes ago
Simple inequality
sqing   12
N an hour ago by Rayvhs
Source: MEMO 2018 T1
Let $a,b$ and $c$ be positive real numbers satisfying $abc=1.$ Prove that$$\frac{a^2-b^2}{a+bc}+\frac{b^2-c^2}{b+ca}+\frac{c^2-a^2}{c+ab}\leq a+b+c-3.$$
12 replies
sqing
Sep 2, 2018
Rayvhs
an hour ago
Random concyclicity in a square config
Maths_VC   2
N an hour ago by Maths_VC
Source: Serbia JBMO TST 2025, Problem 1
Let $M$ be a random point on the smaller arc $AB$ of the circumcircle of square $ABCD$, and let $N$ be the intersection point of segments $AC$ and $DM$. The feet of the tangents from point $D$ to the circumcircle of the triangle $OMN$ are $P$ and $Q$ , where $O$ is the center of the square. Prove that points $A$, $C$, $P$ and $Q$ lie on a single circle.
2 replies
Maths_VC
2 hours ago
Maths_VC
an hour ago
Serbian selection contest for the IMO 2025 - P3
OgnjenTesic   3
N an hour ago by atdaotlohbh
Source: Serbian selection contest for the IMO 2025
Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that:
- $f$ is strictly increasing,
- there exists $M \in \mathbb{N}$ such that $f(x+1) - f(x) < M$ for all $x \in \mathbb{N}$,
- for every $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ such that
\[
            f(y) = \frac{f(x) + f(x + 2024)}{2}.
        \]Proposed by Pavle Martinović
3 replies
OgnjenTesic
May 22, 2025
atdaotlohbh
an hour ago
Easy P4 combi game with nt flavour
Maths_VC   0
an hour ago
Source: Serbia JBMO TST 2025, Problem 4
Two players, Alice and Bob, play the following game, taking turns. In the beginning, the number $1$ is written on the board. A move consists of adding either $1$, $2$ or $3$ to the number written on the board, but only if the chosen number is coprime with the current number (for example, if the current number is $10$, then in a move a player can't choose the number $2$, but he can choose either $1$ or $3$). The player who first writes a perfect square on the board loses. Prove that one of the players has a winning strategy and determine who wins in the game.
0 replies
Maths_VC
an hour ago
0 replies
USAMO 2003 Problem 1
MithsApprentice   70
N an hour ago by endless_abyss
Prove that for every positive integer $n$ there exists an $n$-digit number divisible by $5^n$ all of whose digits are odd.
70 replies
MithsApprentice
Sep 27, 2005
endless_abyss
an hour ago
Basic ideas in junior diophantine equations
Maths_VC   0
an hour ago
Source: Serbia JBMO TST 2025, Problem 3
Determine all positive integers $a, b$ and $c$ such that
$2$ $\cdot$ $10^a + 5^b = 2025^c$
0 replies
Maths_VC
an hour ago
0 replies
Two permutations
Nima Ahmadi Pour   13
N an hour ago by awesomeming327.
Source: Iran prepration exam
Suppose that $ a_1$, $ a_2$, $ \ldots$, $ a_n$ are integers such that $ n\mid a_1 + a_2 + \ldots + a_n$.
Prove that there exist two permutations $ \left(b_1,b_2,\ldots,b_n\right)$ and $ \left(c_1,c_2,\ldots,c_n\right)$ of $ \left(1,2,\ldots,n\right)$ such that for each integer $ i$ with $ 1\leq i\leq n$, we have
\[ n\mid a_i - b_i - c_i
\]

Proposed by Ricky Liu & Zuming Feng, USA
13 replies
Nima Ahmadi Pour
Apr 24, 2006
awesomeming327.
an hour ago
Vertices of a convex polygon if and only if m(S) = f(n)
orl   12
N Apr 24, 2025 by Maximilian113
Source: IMO Shortlist 2000, C3
Let $ n \geq 4$ be a fixed positive integer. Given a set $ S = \{P_1, P_2, \ldots, P_n\}$ of $ n$ points in the plane such that no three are collinear and no four concyclic, let $ a_t,$ $ 1 \leq t \leq n,$ be the number of circles $ P_iP_jP_k$ that contain $ P_t$ in their interior, and let \[m(S)=a_1+a_2+\cdots + a_n.\]Prove that there exists a positive integer $ f(n),$ depending only on $ n,$ such that the points of $ S$ are the vertices of a convex polygon if and only if $ m(S) = f(n).$
12 replies
orl
Aug 10, 2008
Maximilian113
Apr 24, 2025
Vertices of a convex polygon if and only if m(S) = f(n)
G H J
Source: IMO Shortlist 2000, C3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
orl
3647 posts
#1 • 6 Y
Y by Adventure10, junioragd, and 4 other users
Let $ n \geq 4$ be a fixed positive integer. Given a set $ S = \{P_1, P_2, \ldots, P_n\}$ of $ n$ points in the plane such that no three are collinear and no four concyclic, let $ a_t,$ $ 1 \leq t \leq n,$ be the number of circles $ P_iP_jP_k$ that contain $ P_t$ in their interior, and let \[m(S)=a_1+a_2+\cdots + a_n.\]Prove that there exists a positive integer $ f(n),$ depending only on $ n,$ such that the points of $ S$ are the vertices of a convex polygon if and only if $ m(S) = f(n).$
This post has been edited 1 time. Last edited by djmathman, Oct 3, 2016, 3:25 AM
Reason: changed formatting to match imo compendium
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Thjch Ph4 Trjnh
205 posts
#2 • 4 Y
Y by Adventure10, Mango247, and 2 other users
$ f(n) = 2.(_4^n)$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Myth
4464 posts
#3 • 4 Y
Y by Ali3085, Adventure10, Mango247, and 1 other user
It is strange to see such an easy and evident problem in IMO SL.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SnowEverywhere
801 posts
#4 • 12 Y
Y by Catalanfury, Vaijan_Mama, k12byda5h, DCMaths, Adventure10, Mango247, Stuffybear, winniep008hfi, and 4 other users
We claim that the function $f(n)=2 \binom{n}{4}$ satisfies the requirements.

Let the score $s(a,b,c,d)$ of the four points $P_a$, $P_b$, $P_c$ and $P_d$ be the number of points $P_i$ where $i \in \{a,b,c,d \}$ such that $P_i$ is properly contained in the circle passing through the remaining three points. Observe that

\[m(S) = \sum_{1 \le a<b<c<d \le n} s(a,b,c,d)\]

First we prove the following lemma.

Lemma 1. The score of a convex quadrilateral $2$.

Proof. Let the vertices of the convex quadrilateral be denoted as $A, B, C$ and $D$. We have that point $D$ lies within the circumcircle of $\triangle{ABC}$ if and only if

\[\angle{ABC} > 180 - \angle{ADC} \quad \Leftrightarrow \quad \angle{ABC} + \angle{ADC} > 180\]

Therefore if $D$ lies within the circumcircle of $\triangle{ABC}$, it also follows by symmetry that $B$ lies within the circumcircle of $\triangle{ADC}$. If not, then since the sum of the interior angles of $ABCD$ is $360$,

\[\angle{ABC} + \angle{ADC} < 180 \quad \Rightarrow \quad \angle{BAD} + \angle{ACD} > 180\]

Therefore $A$ lies within the circumcircle of $\triangle{BCD}$ and $C$ lies within the circumcircle of $\triangle{ABD}$. In both cases, the score of $ABCD$ is equal to $2$.

Lemma 2. The score of a concave quadrilateral is $1$.

Proof. Let $ABCD$ denote the concave quadrilateral. Without the loss of generality, let $A$ be such that interior angle $\angle{BAC} > 180$. It follows that $A$ lies in the interior of triangle $\triangle{BCD}$. Therefore, the circumcircle of $\triangle{BCD}$ contains $A$. However, none of the remaining three circles passing through three of the points $A, B, C$ and $D$ contain the remaining point. Hence the score of $ABCD$ is equal to $1$.

If Direction. If the vertices of $S$ form a convex $n$-gon, then each quadrilateral formed by four distinct points in $S$ is a convex quadrilateral and therefore

\[m(S) = \sum_{1 \le a<b<c<d \le n} s(a,b,c,d) = 2 \binom{n}{4}\]

Only If Direction. If the vertices of $S$ form a concave $n$-gon, then at least one of the quadrilaterals formed by four distinct points in $S$ is a concave quadrilateral and therefore

\[m(S) = \sum_{1 \le a<b<c<d \le n} s(a,b,c,d) < 2 \binom{n}{4}\]

The function $f(n)=2 \binom{n}{4}$ therefore satisfies that $m(S)=f(n)$ if and only if the points in $S$ are the vertices of a convex polygon.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
JackXD
151 posts
#5 • 1 Y
Y by Adventure10
Lemma Every quadrilateral $S$ satisfies $m(S) \le 2$ with equality if and only if it is convex,

Proof:If a quadrilateral $ABCD$ is convex then one out of $\angle{ABC}+\angle{ADC}$ and $\angle{DAB}+\angle{DCB}$ is greater than $\pi$ and the other is less than $\pi$.This implies $m(S)=2$.One the other hand if it is concave then clearly $m(S)=1$


Back to our main problem.If S forms a convex polygon then every quadrilateral $P_{i}P_{j}P_{k}P_{l}$ contributes $1$ to two of $a_{i},a_{j},a_{k}$ and $a_{l}$ (from the lemma) and thus contributes two to $m(S)$.This immediately implies $f(n)=2\binom{n}{4}$

Now let $m(S)=f(n)=2\binom{n}{4}$.Each quadrilateral $P_{i}P_{j}P_{k}P_{l}$ contributes atmost $2$ to $f(n)$ and thus $m(S) \le 2\binom{n}{4}$.As there is equality,we have that each quadrilateral contributes exactly $2$ to $f(n)$,hence from the lemma every quadrilateral is convex,implying that $S$ forms a convex polygon.
This post has been edited 3 times. Last edited by JackXD, Jan 7, 2016, 4:22 PM
Reason: xx
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
william122
1576 posts
#6 • 2 Y
Y by Adventure10, Mango247
Note that given any 4 points, they add 2 to the count if their convex hull is a quadrilateral, and 1 otherwise. So, $f(n)=2\binom{n}{2}$, with equality achieved iff all quadruplets of points form convex quadrilaterals. However, if there exists a point $P_i$ inside the convex hull $Q_1,Q_2,\ldots,Q_k$, then it must be in one of the triangles $Q_1Q_2Q_3$, $Q_1Q_3Q_4,\ldots Q_1Q_{k-1}Q_k$, which cover the convex hull. So, there exist 4 points whose convex hull is a triangle. Therefore, the only way equality is reached is if all points are on the convex hull, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
niyu
830 posts
#7
Y by
The key idea is to consider four-tuples.

Lemma: If $ABCD$ is a non-cyclic convex quadrilateral, $m(ABCD) = 2$.

Proof: Suppose $ABCD$ is convex and non-cyclic. Note that $\angle ABC + \angle ADC \neq \angle BCD + \angle BAD \neq 180^\circ$. Hence, exactly one of these two sums is greater than $180^\circ$. WLOG, suppose $\angle ABC + \angle ADC > 180^\circ$ and $\angle BCD + \angle BAD < 180^\circ$. Since $\angle ABC > 180^\circ - \angle ADC$ it follows that $B$ lies within $(ADC)$. Similarly, $D$ lies within $(ABC)$. Meanwhile, since $\angle BCD < 180^\circ - \angle BAD$, it follows that $A$ does not lie within $(BCD)$, and similarly, $C$ does not lie within $(ABD)$. This implies that $m(ABCD) = 2$, proving the lemma. $\blacksquare$

Lemma: If $ABCD$ is a concave quadrilateral, $m(ABCD) = 1$.

Proof: Say $\angle BAD > 180^\circ$. Since $A$ and $C$ both lie on the same side of $\overline{BD}$, and $\angle BCD < \angle BAD$, it follows that $C$ does not lie within $(ABD)$, while $A$ lies within $(BCD)$. Meanwhile, since $\angle ABC + \angle ADC < 180^\circ$, by the same argument as in the previous lemma we find that $B$ does not lie within $(ACD)$ and that $D$ does not lie within $(ABC)$. Hence, $m(ABCD) = 1$. $\blacksquare$

We now return to the given problem. We claim that $m(S) \leq 2\binom{n}{4}$, and that equality holds iff the points of $S$ form a convex quadrilateral. Indeed, as no four points in $S$ are concyclic, we have
\begin{align*}
	m(S) &= \sum_{1 \leq w < x < y < z \leq n} m(P_wP_xP_yP_z) \\
	&\leq \sum_{1 \leq w < x < y < z \leq n} 2 \\
	&\leq 2\binom{n}{4}.
\end{align*}Equality holds here iff each of the quadrilaterals $P_wP_xP_yP_z$ is convex, which occurs iff the points of $S$ form a cyclic quadrilateral. This completes the proof. $\Box$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bluelinfish
1449 posts
#8
Y by
Rather easy for a C3.

All angles are in degrees.

Claim: Suppose $Q$ consists of four points $A,B,C,D$. Then $m(Q)$ is $2$ if $A,B,C,D$ form a convex quadrilateral and $1$ otherwise.
Proof. Notice that if $A,B,C,D$ form a convex quadrilateral, then $D$ appears inside the circumcircle of $ABC$, $\angle D$ must be greater than $180-\angle B$, which is equivalent to $\angle B + \angle D >180$. Since exactly one opposite pair of angles sum to greater than $180$ degrees, there will be exactly two points that are contained in the circumcircle of the other three.

If $A,B,C,D$ are not convex, WLOG let $A,B,C$ be the convex hull. Then it is clear that the only point that is contained in the circumcircle of the other three is $D$. $\blacksquare$

The key step is to notice that $$m(S)=\sum_{1\le a<b<c<d\le n} m\left(\{P_a,P_b,P_c,P_d\}\right)$$because both quantities count the amount of ordered pairs containing a single point of $S$ and a set of three points in $S$, with all four points distinct, such that the single point is inside the circumcircle of the three points.

Using our claim, $m(S)$ must be equal to twice the number of four-point subsets of $S$ that consist of points forming a convex quadrilateral plus the four-point subsets of $S$ that do not. Moreover, every subset of four points form a convex quadrilateral iff $S$ does, so $m(S)=2\binom{n}{4}$ iff $S$ forms a convex quadrilateral. We are done.
This post has been edited 1 time. Last edited by bluelinfish, Jan 18, 2022, 10:45 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
awesomeming327.
1736 posts
#9 • 3 Y
Y by Mango247, Mango247, Mango247
Let $m(\{a,b,c,d\})$ be the number $m(S)$ for the quadrilateral $P_aP_bP_cP_d.$ It is easy to see that $m(S)$ is the sum of $m(\{a,b,c,d\})$ for all choices of subset $\{a,b,c,d\} \subseteq S$. Note that $(P_aP_bP_c)$ contains $P_d$ if only $P_d$ lies inside of the angle $P_aP_bP_c$ and $\angle P_b+\angle P_d> 180^\circ.$ Clearly, when $P_aP_bP_cP_d$ then $m(a,b,c,d)=2$ and when it is nonconvex $m(a,b,c,d)=1$. Therefore, $m(S)=2\tbinom{n}4$ if and only if $S$ is convex.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
john0512
4191 posts
#10
Y by
Note that by swapping the order of summation, $m(S)$ is equal to the number of quadruples of points $(A,B,C,D)$ where $D$ is inside $(ABC)$ and $A,B,C$ are unordered.

Claim: Each set of 4 points contributes $2$ if they are convex, and $1$ if they are not.

If $ABCD$ is convex and non-cyclic, then we either have $\angle A+\angle C>180$ or $\angle B+\angle D>180$ but not both. However, since $A$ is inside $(BCD)$ if and only if $\angle A+\angle C>180$, etc, the convex quadriateral contributes $2$. If $D$ is inside $\triangle ABC$, then $D$ will be inside $(ABC)$ but nothing else works.

Thus, the maximum possible value of $m(S)$ is $2{n\choose 4}$, with equality if and only if each quadrilateral is convex, which is the same as saying the entire set is convex. We are done as $f(n)=2{n\choose 4}$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
asdf334
7585 posts
#11
Y by
For any four points $S'=\{P_a,P_b,P_c,P_d\}$ count the value $m(S')$. Notice this is either $2$ if the convex hull is a quadrilateral (i.e. the points form a convex polygon) and $1$ if the convex hull is a triangle (i.e. there is an interior point).
Clearly $f(n)$ is the sum of $m(S')$ over all such $S'$. Hence the maximum occurs if every convex hull of four points is a quadrilateral. If the points of $S$ are the vertices of a convex polygon this occurs. If the points of $S$ are not the vertices of a convex polygon then triangulate the convex hull. Any interior point is contained in a triangle and for these four points we have $m(S')=1$. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
onyqz
195 posts
#12
Y by
storage
solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maximilian113
575 posts
#13
Y by
Observe that in any $4$ points $A, B, C, D,$ if they form a convex polygon there are $2$ pairs of the form $(i, \omega)$ where $i$ is a point from $A, B, C, D$ and $\omega$ is the circumcircle of the other points. However if they form a non-convex polygon there is $1$ only.

Clearly, if we consider all quadruples of points from our $n$ points, and sum up the number of valid pairs, every point, along with a circumcircle it lies in, is counted. In addition, the point and circumcircle pair uniquely determines which quadruple it was counted in, meaning that this count yields a injection and surjection to $m(S),$ so there is a bijection.

Therefore if $x$ quadruples are convex and $y$ are concave, $$m(S) = 2x+y.$$But $x+y=\binom{n}{4}$ so $$m(S)=\binom{n}{4}+x,$$and the desired result follows. QED
Z K Y
N Quick Reply
G
H
=
a