Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
PoP+Parallel
Solilin   1
N 15 minutes ago by sansgankrsngupta
Source: Titu Andreescu, Lemmas in Olympiad Geometry
Let ABC be a triangle and let D, E, F be the feet of the altitudes, with D on BC, E on CA, and F on AB. Let the parallel through D to EF meet AB at X and AC at Y. Let T be the intersection of EF with BC and let M be the midpoint of side BC. Prove that the points T, M, X, Y are concyclic.
1 reply
Solilin
44 minutes ago
sansgankrsngupta
15 minutes ago
Another config geo with concurrent lines
a_507_bc   15
N 24 minutes ago by E50
Source: BMO SL 2023 G5
Let $ABC$ be a triangle with circumcenter $O$. Point $X$ is the intersection of the parallel line from $O$ to $AB$ with the perpendicular line to $AC$ from $C$. Let $Y$ be the point where the external bisector of $\angle BXC$ intersects with $AC$. Let $K$ be the projection of $X$ onto $BY$. Prove that the lines $AK, XO, BC$ have a common point.
15 replies
a_507_bc
May 3, 2024
E50
24 minutes ago
Regarding Maaths olympiad prepration
omega2007   4
N an hour ago by omega2007
<Hey Everyone'>
I'm 10 grader student and Im starting prepration for maths olympiad..>>> From scratch (not 2+2=4 )

Do you haves compiled resources of Handouts,
PDF,
Links,
List of books topic wise

which are shared on AOPS (and from your perspective) for maths olympiad and any useful thing, which will help me in boosting Maths olympiad prepration.
4 replies
omega2007
Yesterday at 3:13 PM
omega2007
an hour ago
square root problem that involves geometry
kjhgyuio   2
N 2 hours ago by ND_
If x is a nonnegative real number , find the minimum value of √x^2+4 + √x^2 -24x +153

2 replies
kjhgyuio
3 hours ago
ND_
2 hours ago
inquequality
ngocthi0101   9
N 3 hours ago by sqing
let $a,b,c > 0$ prove that
$\frac{a}{b} + \sqrt {\frac{b}{c}}  + \sqrt[3]{{\frac{c}{a}}} > \frac{5}{2}$
9 replies
ngocthi0101
Sep 26, 2014
sqing
3 hours ago
Assisted perpendicular chasing
sarjinius   5
N 3 hours ago by hukilau17
Source: Philippine Mathematical Olympiad 2025 P7
In acute triangle $ABC$ with circumcenter $O$ and orthocenter $H$, let $D$ be an arbitrary point on the circumcircle of triangle $ABC$ such that $D$ does not lie on line $OB$ and that line $OD$ is not parallel to line $BC$. Let $E$ be the point on the circumcircle of triangle $ABC$ such that $DE$ is perpendicular to $BC$, and let $F$ be the point on line $AC$ such that $FA = FE$. Let $P$ and $R$ be the points on the circumcircle of triangle $ABC$ such that $PE$ is a diameter, and $BH$ and $DR$ are parallel. Let $M$ be the midpoint of $DH$.
(a) Show that $AP$ and $BR$ are perpendicular.
(b) Show that $FM$ and $BM$ are perpendicular.
5 replies
sarjinius
Mar 9, 2025
hukilau17
3 hours ago
Tangent.
steven_zhang123   2
N 4 hours ago by AshAuktober
Source: China TST 2001 Quiz 6 P1
In \( \triangle ABC \) with \( AB > BC \), a tangent to the circumcircle of \( \triangle ABC \) at point \( B \) intersects the extension of \( AC \) at point \( D \). \( E \) is the midpoint of \( BD \), and \( AE \) intersects the circumcircle of \( \triangle ABC \) at \( F \). Prove that \( \angle CBF = \angle BDF \).
2 replies
steven_zhang123
Mar 23, 2025
AshAuktober
4 hours ago
IMO ShortList 1998, algebra problem 1
orl   37
N 4 hours ago by Marcus_Zhang
Source: IMO ShortList 1998, algebra problem 1
Let $a_{1},a_{2},\ldots ,a_{n}$ be positive real numbers such that $a_{1}+a_{2}+\cdots +a_{n}<1$. Prove that

\[ \frac{a_{1} a_{2} \cdots a_{n} \left[ 1 - (a_{1} + a_{2} + \cdots + a_{n}) \right] }{(a_{1} + a_{2} + \cdots + a_{n})( 1 - a_{1})(1 - a_{2}) \cdots (1 - a_{n})} \leq \frac{1}{ n^{n+1}}. \]
37 replies
orl
Oct 22, 2004
Marcus_Zhang
4 hours ago
Integer Coefficient Polynomial with order
MNJ2357   9
N 4 hours ago by v_Enhance
Source: 2019 Korea Winter Program Practice Test 1 Problem 3
Find all polynomials $P(x)$ with integer coefficients such that for all positive number $n$ and prime $p$ satisfying $p\nmid nP(n)$, we have $ord_p(n)\ge ord_p(P(n))$.
9 replies
MNJ2357
Jan 12, 2019
v_Enhance
4 hours ago
Inspired by bamboozled
sqing   0
4 hours ago
Source: Own
Let $ a,b,c $ be reals such that $(a^2+1)(b^2+1)(c^2+1) = 27. $Prove that $$1-3\sqrt 3\leq ab + bc + ca\leq 6$$
0 replies
sqing
4 hours ago
0 replies
Range of ab + bc + ca
bamboozled   1
N 4 hours ago by sqing
Let $(a^2+1)(b^2+1)(c^2+1) = 9$, where $a, b, c \in R$, then the number of integers in the range of $ab + bc + ca$ is __
1 reply
bamboozled
5 hours ago
sqing
4 hours ago
Functional Equation
AnhQuang_67   4
N 4 hours ago by AnhQuang_67
Find all functions $f: \mathbb{R} \to \mathbb{R}$ satisfying $$2\cdot f\Big(\dfrac{-xy}{2}+f(x+y)\Big)=xf(y)+yf(x), \forall x, y \in \mathbb{R} $$
4 replies
AnhQuang_67
Yesterday at 4:50 PM
AnhQuang_67
4 hours ago
Cute orthocenter geometry
MarkBcc168   77
N Mar 29, 2025 by ErTeeEs06
Source: ELMO 2020 P4
Let acute scalene triangle $ABC$ have orthocenter $H$ and altitude $AD$ with $D$ on side $BC$. Let $M$ be the midpoint of side $BC$, and let $D'$ be the reflection of $D$ over $M$. Let $P$ be a point on line $D'H$ such that lines $AP$ and $BC$ are parallel, and let the circumcircles of $\triangle AHP$ and $\triangle BHC$ meet again at $G \neq H$. Prove that $\angle MHG = 90^\circ$.

Proposed by Daniel Hu.
77 replies
MarkBcc168
Jul 28, 2020
ErTeeEs06
Mar 29, 2025
Cute orthocenter geometry
G H J
G H BBookmark kLocked kLocked NReply
Source: ELMO 2020 P4
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MarkBcc168
1594 posts
#1 • 7 Y
Y by KKSingla2003, Amir Hossein, mira74, giveandtake, centslordm, brickmaster8, Rounak_iitr
Let acute scalene triangle $ABC$ have orthocenter $H$ and altitude $AD$ with $D$ on side $BC$. Let $M$ be the midpoint of side $BC$, and let $D'$ be the reflection of $D$ over $M$. Let $P$ be a point on line $D'H$ such that lines $AP$ and $BC$ are parallel, and let the circumcircles of $\triangle AHP$ and $\triangle BHC$ meet again at $G \neq H$. Prove that $\angle MHG = 90^\circ$.

Proposed by Daniel Hu.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GeoMetrix
924 posts
#2 • 4 Y
Y by amar_04, centslordm, brickmaster8, PRMOisTheHardestExam
Let $O$ denote the circumcenter of $\triangle{BHC}$ and let $E$ denote the circumcenter of $\triangle{AHP}$. We begin with a crucial claim.

Claim: If $H'$ is the antipode of $H$ w.r.t $\odot(BHC)$ then $\overline{AM} \cap \overline{PG}=H'$

Proof: Let $H_A$ denote the $A$ -humpty point. Then notice that $$\angle HH_AH'=\angle HH_AM=90^\circ$$and hence $H' \in \overline{AM}$. Now just note that $$\angle HGH'+\angle HGP=180^\circ$$and so $H' \in \overline{PG}$ $\qquad \blacksquare$

Now notice that its well known that $H'$ is the reflection of $A$ in $M$ (just angle chase) Also clearly $\overline{AP} \parallel \overline{BC}$ and hence we have that $\overline{AM}=\tfrac{1}{2}\overline{AP}$. But notice that clearly if $X=\overline{MH} \cap \overline{AP}$ then $X$ Is the midpoint of $\overline{AP}$ and hence we get that $MXPF$ is a parallelogram which implies that $\overline{MH} \parallel \overline{PG}$ with which we are done $\qquad \blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Omega18
161 posts
#3 • 7 Y
Y by zephyr7723, Amir Hossein, indulged, Braman, thedragon01, PRMOisTheHardestExam, Mathlover_1
[asy] 
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(25.15639756385678cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -14.693141418188027, xmax = 10.463256145668753, ymin = -10.172937052451232, ymax = -0.3526248182641615;  /* image dimensions */
pen qqttcc = rgb(0.,0.2,0.8); 
 /* draw figures */
draw((-2.685950600670045,-2.6026295254967415)--(-3.624326490091042,-5.644785490957004), linewidth(0.8)); 
draw((-3.624326490091042,-5.644785490957004)--(0.33825647657857444,-5.690281506463871), linewidth(0.8)); 
draw((0.33825647657857444,-5.690281506463871)--(-2.685950600670045,-2.6026295254967415), linewidth(0.8)); 
draw(circle((-1.63070852463975,-4.593929414274443), 2.2536217708548194), linewidth(0.8)); 
draw(circle((-1.655361488872718,-6.741137583146432), 2.253621770854819), linewidth(0.8)); 
draw(circle((-5.254956026365177,-3.6468793463522564), 2.77312938133218), linewidth(0.8)); 
draw((-7.799308487827341,-2.543920998335784)--(-2.685950600670045,-2.6026295254967415), linewidth(0.8)); 
draw((-1.6430350067562338,-5.667533498710437)--(-5.242629544248693,-2.5732752619162627), linewidth(0.8) + qqttcc); 
draw((-0.6001194128424232,-8.732437471924131)--(-7.799308487827341,-2.543920998335784), linewidth(0.8) + qqttcc); 
draw((-0.6001194128424232,-8.732437471924131)--(-2.685950600670045,-2.6026295254967415), linewidth(0.8)); 
draw((-0.5650721123368723,-5.67991002608484)--(-7.799308487827341,-2.543920998335784), linewidth(0.8)); 
draw((-2.720997901175595,-5.655156971336034)--(-2.685950600670045,-2.6026295254967415), linewidth(0.8)); 
 /* dots and labels */
dot((-2.685950600670045,-2.6026295254967415),linewidth(2.pt) + dotstyle); 
label("$A$", (-2.6739736932342324,-2.4396740976359865), NE * labelscalefactor); 
dot((-3.624326490091042,-5.644785490957004),linewidth(2.pt) + dotstyle); 
label("$B$", (-3.885207650012522,-5.551613648127904), NE * labelscalefactor); 
dot((0.33825647657857444,-5.690281506463871),linewidth(2.pt) + dotstyle); 
label("$C$", (0.38206275156022085,-5.6261511223911835), NE * labelscalefactor); 
dot((-2.710603564903013,-4.749837694368731),linewidth(2.pt) + dotstyle); 
label("$H$", (-2.6367049561025926,-4.675798325534371), NE * labelscalefactor); 
dot((-2.720997901175595,-5.655156971336034),linewidth(2.pt) + dotstyle); 
label("$D$", (-2.6553393246684127,-5.588882385259544), NE * labelscalefactor); 
dot((-1.6430350067562338,-5.667533498710437),linewidth(2.pt) + dotstyle); 
label("$M$", (-1.574545947850862,-5.588882385259544), NE * labelscalefactor); 
dot((-0.5650721123368723,-5.67991002608484),linewidth(2.pt) + dotstyle); 
label("$D'$", (-0.4937525710333115,-5.607516753825364), NE * labelscalefactor); 
dot((-7.799308487827341,-2.543920998335784),linewidth(2.pt) + dotstyle); 
label("$P$", (-7.910231260229606,-2.4396740976359865), NE * labelscalefactor); 
dot((-3.782515686424972,-5.996808283772401),linewidth(2.pt) + dotstyle); 
label("$G$", (-4.220626284197279,-6.0920103365366804), NE * labelscalefactor); 
dot((-5.242629544248693,-2.5732752619162627),linewidth(2.pt) + dotstyle); 
label("$T$", (-5.1709790810540905,-2.4955772033334465), NE * labelscalefactor); 
dot((-0.6001194128424232,-8.732437471924131),linewidth(2.pt) + dotstyle); 
label("$Z$", (-0.549655676730771,-8.551746987224902), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Let $ T = HM \cap AP $
Now $ \triangle AHP \sim \triangle DHD' $, consider the homothety $\Omega$ centered at $H$ that maps $ DD' \mapsto AP $
Then $ \Omega : M \mapsto T $. Now as $M$ is midpoint of $DD' \Rightarrow \boxed{ T \mbox{ is midpoint of } AP } $

Now it is well known that $ ( BHC ) := $ reflection of $(ABC)$ about $BC$
Let $ AM \cap ( BHC ) = Z $, then $ Z$ is reflection of $A$ about $M$.
Thus, we have $ \boxed{ M \mbox{ is midpoint of } AZ }$

Hence by midpoint theorem $ \boxed{ MT \parallel PZ }$

Claim : $ G,P,Z $ are collinear.
Let $ \measuredangle := $ directed angle mod $ 180^{\circ} $
Now $B,C,Z,G$ are concyclic and $ ABZC $ is a parallelogram thus
$$ \measuredangle BGZ = \measuredangle BCZ = \measuredangle CBA $$Also $ \measuredangle PGB + \measuredangle BGH = \measuredangle PGH = \measuredangle PAH = 90^{\circ} $
\begin{align*} \Rightarrow \measuredangle PGB & = 90^{\circ} - \measuredangle BGH \\ & = 90^{\circ} - \measuredangle BCH \\ & = \measuredangle ABC \\ & = - \measuredangle BGZ \end{align*}
$\therefore \measuredangle BGP = \measuredangle BGZ $
Thus we get $\boxed{ G,P,Z \mbox{ are collinear. } } $
Hence $ PG \parallel HM $
$ \Rightarrow \measuredangle MHG = \measuredangle PGH = \measuredangle PAH = 90^{\circ} $
Hence, proved.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
lilavati_2005
357 posts
#4 • 1 Y
Y by char2539
https://i.imgur.com/SmTjWZo.png
Introduce the following points :
$O_1$ is the center of $\odot(ABC)$
$O_2$ is the center of $\odot(HBC)$
$O_3$ is the center of $\odot(AHP)$
$O_4$ is the center of $\odot(HDD')$

We know that $O_3$ and $O_4$ are the midpoints of $PH$ and $HD'$ respectively.

Lemma(Well Known)
Proof

By Lemma $O_2$ is the reflection of $O_1$ over $BC$.

Since $M$ is the midpoint of $DD'$ and $O_1O_2 \perp DD',O_1, O_4, O_2$ are collinear.
$O_2O_3 \perp GH$ since $GH$ is the radical axis of $\odot(AHP)$ and $\odot(BHC)$
Hence it suffices to show that $MH \parallel O_2O_3$

$AP \parallel BC \Longrightarrow \frac{DH \div 2}{HP \div 2} = \frac{O_4H}{HO_3} = \frac{D'H}{HP} = \frac{AH}{HD}$

$O_4M = HD \div 2$ since $O_4M$ is the $D'$ midline wrt $\triangle D'HD$
$O_2M =O_1M = O_1B \cos A = AH \div 2$
The last equality above follows from LOS in $\triangle AHB$.

Hence, $\frac{O_4H}{HO_3} = \frac{O_4M}{MO_2} \Longrightarrow MH \parallel O_2O_3$
This post has been edited 1 time. Last edited by lilavati_2005, Jul 28, 2020, 7:56 AM
Reason: added a diagram
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Severus
742 posts
#5 • 1 Y
Y by Imayormaynotknowcalculus
A four page coordinate bash also does the trick.

Sketch
This post has been edited 1 time. Last edited by Severus, Jul 28, 2020, 12:45 PM
Reason: added sketch
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MP8148
888 posts
#6 • 8 Y
Y by Mathasocean, Amir Hossein, Muaaz.SY, Siddharth03, SSaad, PRMOisTheHardestExam, vrondoS, Radin.AmirAslani
[asy]
size(8cm);
defaultpen(fontsize(10pt));

pair A = dir(105), B = dir(210), C = dir(330), H = orthocenter(A,B,C), D = foot(A,B,C), M = (B+C)/2, R = dir(75), D1 = 2M-D, A1 = 2M-H, Q = 2*D1-R, P = extension(A,R,H,D1), G = foot(H,P,Q);

draw(unitcircle^^circumcircle(H,G,Q));
draw(B--C^^A--P--Q--R--A--D^^A1--H--D1^^P--H--G);

dot("$A$", A, dir(95));
dot("$B$", B, dir(180));
dot("$C$", C, dir(0));
dot("$H$", H, dir(50));
dot("$D$", D, dir(270));
dot("$M$", M, dir(240));
dot("$D'$", D1, dir(315));
dot("$A'$", A1, dir(320));
dot("$P$", P, dir(150));
dot("$G$", G, dir(180));
dot("$Q$", Q, dir(285));
dot("$R$", R, dir(75));
[/asy]
Let $A'$ be the antipode of $A$ on $(ABC)$, $R$ be the point on $(ABC)$ such that $\overline{AR} \parallel \overline{BC}$, and $Q$ be the reflection of $A$ over $M$. It is well known that $M$ is the midpoint of $\overline{A'H}$, so by symmetry $Q$ is the antipode of $H$ on $(BHC)$, and $R$, $D'$, $A'$, $Q$ are collinear with $D$ the midpoint of $\overline{RQ}$.

We can redefine $G \ne Q = \overline{PQ} \cap (BHC)$, and it suffices to prove $\overline{HA'} \parallel \overline{PQ}$. But this is immediate from $$\dfrac{D'A'}{D'H} = \dfrac{DH}{D'H} = \dfrac{D'R}{D'P} = \dfrac{D'Q}{D'P}.$$$\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Idio-logy
206 posts
#7 • 1 Y
Y by Nathanisme
Solution
This post has been edited 1 time. Last edited by Idio-logy, Jul 28, 2020, 8:05 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathematicsislovely
245 posts
#8
Y by
In the following solution $(XYZ)$ denote the circumcircle of $XYZ$.

Let $AH$ cut $(BHC)$ again at $X$.Let perpendicular on $BC$ at $D'$ cut $(BHC)$ at $R$ and $Y$ where $R,H$ lies same side on $BC$.As the perpendicular line on $BC$ at $D$ and $D'$ are symmetric about the diametre of $(BHC)$ passing through $M$, so $HRYX$;$HRD'D$;$D'DXY$ are rectangle.

$\textcolor{blue}{CLAIM1:}$$P,G,Y$ are collinear.
$\textcolor{red}{Proof:}$ Let $PG$ cut $(BHC)$ again at $Y'$.As $G,H$ are common point of $(BHC)$ and $(PAH)$ and $AH\cap (BHC)= X$,so by Reim's theorem $AP||XY'$.On the other hand $XY|| DD'||AP$ and $Y$ lies on $(BHC)$.So $Y'\equiv Y$.$\square$

Now as $PAHG$ is concyclic so $\angle PGH=180^{\circ}-\angle PAH=90^{\circ}$.So it is enough to show that $PG||HM$ which will prove that $90^{\circ}=\angle PGH=\angle MHG$.

We will prove that $PY||HM$

Let the perpendicular line on $BC$ at $D'$ cut $PA$ at $S$.Also let $MH\cap PS=Q$ and $HM\cap YS=V$

$\textcolor{blue}{CLAIM2:}$ $D'S=D'Y$
$\textcolor{red}{Proof:}$ Let $X'$ be the reflection of $A$ over $BC$.Then $\angle BXC=\angle BAC=180^{\circ}-\angle BHC$ So $B,H,C,X'$ are concyclic.So $X'\equiv X$
Now as $ASD'D$ and $DD'YX$ are rectangle so
$SD'=AD=DX=D'Y$.$\square$

$\textcolor{blue}{CLAIM3:}$ $RD'=D'V$
$\textcolor{red}{Proof:}$$DH||D'V$ and $M= HV\cap DD'$ is the midpoint of $DD'$.SO $DHD'V$ is a parallegram.So $HD=D'V$.But since $HDD'R$ is rectangle $HD=RD'$$\square$

$\textcolor{blue}{CLAIM4:}$ $QV||PY$.
$\textcolor{red}{Proof:}$ On one hand we have,
$\frac{SY}{SP}=2\frac {SD'}{SP}=2\frac{RD'}{RG}$.[The first equality by $D'$=midpoint of $SY$]
On the other hand ,
$\frac{SV}{SQ}=\frac{RV}{RH}=2\frac{RD'}{RH}$[AS,$D'$ is the midpoint of $RV$]

SO $\frac{SY}{SP}=\frac{SV}{SQ}$ which implies
$PY||QV$.So $PG||HM$.SO $\angle MHG=90^{\circ}$$\blacksquare$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
srijonrick
168 posts
#9 • 3 Y
Y by Aritra12, Amir Hossein, A-Thought-Of-God
MarkBcc168 wrote:
Let acute scalene triangle $ABC$ have orthocenter $H$ and altitude $AD$ with $D$ on side $BC$. Let $M$ be the midpoint of side $BC$, and let $D'$ be the reflection of $D$ over $M$. Let $P$ be a point on line $D'H$ such that lines $AP$ and $BC$ are parallel, and let the circumcircles of $\triangle AHP$ and $\triangle BHC$ meet again at $G \neq H$. Prove that $\angle MHG = 90^\circ$.

Proposed by Daniel Hu.

Another $MH$ line configuration! :)

[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(12cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -12.7655891980115, xmax = 9.257249900918303, ymin = -8.548927726358093, ymax = 5.1113621322226335;  /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0); pen zzttff = rgb(0.6,0.2,1); pen ffvvqq = rgb(1,0.3333333333333333,0); pen ccqqqq = rgb(0.8,0,0); pen fuqqzz = rgb(0.9568627450980393,0,0.6); 

draw((-3.394872238111926,2.523862673503301)--(-5.9650112473135035,-4.858490859924286)--(7.0349887526864965,-4.858490859924286)--cycle, linewidth(0.8) + zzttqq); 
draw((-5.9650112473135035,-4.858490859924286)--(-3.394872238111926,-1.2273734294705232)--(7.0349887526864965,-4.858490859924286)--cycle, linewidth(0.8) + ffvvqq); 
draw((-5.264643222971541,-3.250976410057223)--(-3.394872238111926,-1.2273734294705232)--(0.5349887526864965,-4.858490859924286)--cycle, linewidth(1.2) + fuqqzz); 
 /* draw figures */
draw((-3.394872238111926,2.523862673503301)--(-5.9650112473135035,-4.858490859924286), linewidth(0.8) + zzttqq); 
draw((-5.9650112473135035,-4.858490859924286)--(7.0349887526864965,-4.858490859924286), linewidth(0.8) + zzttqq); 
draw((7.0349887526864965,-4.858490859924286)--(-3.394872238111926,2.523862673503301), linewidth(0.8) + zzttqq); 
draw((-3.394872238111926,2.523862673503301)--(-3.394872238111926,-4.858490859924286), linewidth(0.8) + blue); 
draw((4.464849743484919,-4.858490859924286)--(-3.394872238111926,-1.2273734294705232), linewidth(0.8)); 
draw((xmin, 0*xmin + 2.5238626735033014)--(xmax, 0*xmax + 2.5238626735033014), linewidth(0.8) + zzttqq); /* line */
draw((-11.514596653914866,2.5238626735033014)--(-3.394872238111926,-1.2273734294705232), linewidth(0.8)); 
draw(circle((-7.454734446013396,0.6482446220163888), 4.472183384233048), linewidth(0.8) + zzttff); 
draw(circle((0.5349887526864965,-6.7341089114112), 6.765200889483147), linewidth(0.8) + blue); 
draw((-5.9650112473135035,-4.858490859924286)--(-3.394872238111926,-1.2273734294705232), linewidth(0.8) + ffvvqq); 
draw((-3.394872238111926,-1.2273734294705232)--(7.0349887526864965,-4.858490859924286), linewidth(0.8) + ffvvqq); 
draw((7.0349887526864965,-4.858490859924286)--(-5.9650112473135035,-4.858490859924286), linewidth(0.8) + ffvvqq); 
draw((-7.454734446013397,0.6482446220163874)--(0.5349887526864965,-6.734108911411201), linewidth(0.8) + ccqqqq); 
draw((-5.264643222971541,-3.250976410057223)--(-3.394872238111926,-1.2273734294705232), linewidth(0.8) + fuqqzz); 
draw((-3.394872238111926,-1.2273734294705232)--(0.5349887526864965,-4.858490859924286), linewidth(0.8) + fuqqzz); 
draw((0.5349887526864965,-4.858490859924286)--(-5.264643222971541,-3.250976410057223), linewidth(0.8) + fuqqzz); 
draw((0.5349887526864956,-2.9828728084373735)--(0.5349887526864965,-6.734108911411201), linewidth(1.2)); 
draw((-7.454734446013397,2.5238626735033014)--(-7.454734446013397,0.6482446220163874), linewidth(0.8)); 
draw((-7.454734446013397,2.5238626735033014)--(-3.394872238111926,-1.2273734294705232), linewidth(0.8) + fuqqzz); 
 /* dots and labels */
dot((-3.394872238111926,2.523862673503301),linewidth(4pt) + dotstyle); 
label("$A$", (-3.3084654497633146,2.7032982148446205), NE * labelscalefactor); 
dot((-5.9650112473135035,-4.858490859924286),linewidth(4pt) + dotstyle); 
label("$B$", (-5.869769798247198,-4.6741339683952905), NE * labelscalefactor); 
dot((7.0349887526864965,-4.858490859924286),linewidth(4pt) + dotstyle); 
label("$C$", (7.111883865436075,-4.6741339683952905), NE * labelscalefactor); 
dot((-3.394872238111926,-1.2273734294705232),linewidth(3pt) + dotstyle); 
label("$H$", (-3.3084654497633146,-1.1058210726442357), NE * labelscalefactor); 
dot((-3.394872238111926,-4.858490859924286),linewidth(3pt) + dotstyle); 
label("$D$", (-3.3084654497633146,-4.717916948711254), NE * labelscalefactor); 
dot((0.5349887526864965,-4.858490859924286),linewidth(3pt) + dotstyle); 
label("$M$", (0.6320027786734296,-4.717916948711254), NE * labelscalefactor); 
dot((4.464849743484919,-4.858490859924286),linewidth(3pt) + dotstyle); 
label("$D'$", (4.550579516952192,-4.717916948711254), NE * labelscalefactor); 
dot((-11.514596653914866,2.5238626735033014),linewidth(3pt) + dotstyle); 
label("$P$", (-11.49588276884855,1.9808790396312168), NE * labelscalefactor); 
dot((-5.264643222971541,-3.250976410057223),linewidth(3pt) + dotstyle); 
label("$G$", (-5.760312347457289,-3.64523393097014), NE * labelscalefactor); 
dot((-7.454734446013397,0.6482446220163874),linewidth(3pt) + dotstyle); 
label("$X$", (-7.358391128989968,0.7768470809422106), NE * labelscalefactor); 
dot((0.5349887526864965,-6.734108911411201),linewidth(3pt) + dotstyle); 
label("$O'$", (0.6320027786734296,-6.600585102297701), NE * labelscalefactor); 
dot((0.5349887526864956,-2.9828728084373735),linewidth(3pt) + dotstyle); 
label("$O$", (0.52254532788352,-2.879031775440772), NE * labelscalefactor); 
dot((-2.3648272351425224,-4.054733634990755),linewidth(3pt) + dotstyle); 
label("$E$", (-2.695503725339821,-4.411436086499507), NE * labelscalefactor); 
dot((-7.454734446013397,2.5238626735033014),linewidth(3pt) + dotstyle); 
label("$F$", (-7.358391128989968,2.659515234528657), NE * labelscalefactor); 
dot((-4.329757730541734,-2.2391749197638733),linewidth(3pt) + dotstyle); 
label("$L$", (-4.2497995265565365,-2.1128296199114045), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */[/asy]

Claim 1: $\overline{MH}$ passes through the midpoint of $AP.$
Proof

Now, let us denote the centers of $\odot(APH)$ and $\odot(ABC)$ by $X$ and $O$ respectively. Also, we note $X$ is the midpoint of $PH$, since $\triangle APH$ is right-angled at $A$.

Claim 2: $O'$, the reflection of $O$ over $BC$ is the circumcenter of $\triangle BHC.$
Proof

Now, let us denote the midpoint of $GH$ by $L$. Since $\overline{GH}$ is the radical axis of $\odot(APH)$ and $\odot(BHC)$, so $\overline{O'X}$ must pass through $L$ and $\overline{O'X} \perp \overline{GH}.$

Next, in $\triangle APH$, we have $XF \parallel AH$ and $XF = \frac{AH}{2}$ by Midpoint theorem. Also, we have $O'M \parallel AH$ and $O'M = \frac{AH}{2}.$

Hence, $XFMO'$ is a parallelogram. So, $XO' \parallel FM\implies \angle GLO' = \angle GHM.$ By Radical Axis theorem, $\angle GLO' = 90^{\circ} \implies \angle MHG = 90^{\circ}. \quad\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Kimchiks926
256 posts
#10 • 2 Y
Y by Amir Hossein, mkomisarova
Let $O$ denote the circumcenter of $\odot(ABC)$ and $O'$ the circumcenter of $\odot(BHC)$. It is well - known that $\odot(BHC)$ is reflection of $\odot(ABC)$ over $BC$, therefore $O'$ is reflection of $O$ over the midpoint of $BC$. Let $J$ denote the midpoint of $HP$, which is obviously the center of $\odot(AHP)$.

Claim: $HM \parallel JO'$
Proof: Assume that $OO'$ intersects $HD'$ at point $K$. Clearly $KM$ is the midline in $\triangle HDD'$. It is well - known that $AH=OO'$ (this can be simply proved using complex numbers). Also note that $\triangle APH \sim \triangle DD'H$. Therefore:
$$ \frac{PH}{HD'}=\frac{2JH}{2HK} =\frac{AH}{HD}=\frac{OO'}{HD}=\frac{2MO'}{2KM}$$As a result:
$$\frac{JH}{HK}=\frac{O'M}{MK} $$This implies that $HM \parallel JO'$ as desired.

Now to finish note that $GH$ is radical axis of $\odot(BHC)$ and $\odot(AHP)$. Therefore $GH \perp JO'$. Since $HM \parallel JO'$, we conclude that $GH \perp HM $, which implies that $\angle MHG=90$ as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Steve12345
618 posts
#11 • 1 Y
Y by ehuseyinyigit
The $A-Queue$ point is the orthocenter of triangle $APG$. The problem statement follows easily from this fact.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Googolplexian
56 posts
#12 • 3 Y
Y by Amir Hossein, ihatemath123, Mango247
I didn't find a synthetic solution until after the time, so I will write the (fairly horrible) barybash I did (I am sorry).

We use Barycentric coordintates wrt triangle $ABC$.
Use Conway's Notation: $S_A=\frac {b^2+c^2-a^2}{2}, S_B= \frac {a^2+c^2-b^2}{2}, S_C= \frac {a^2+b^2-c^2}{2}$, and let $S_{AB}=S_AS_B$ and $S$ be twice the area of triange ABC.
We have $B=(0, 1, 0), C=(0, 0, 1), H=(S_{BC} : S_{CA} : S_{AB})$.
Let circle $BHC$ have equation $-a^2yz-b^2zx-c^2xy+(ux+vy+wz)(x+y+z)=0$
From points $B$ and $C$, we get $v=0, w=0$ respectively, and then using $H$, we obtain $$-S_AS_BS_C(a^2S_A+b^2S_B+c^2S_C)+uS_BS_C(S_{BC}+S_{CA}+S_{AB})=0$$Now $S_B+S_C=a^2$, with cyclic varations, and so it follows that $\frac{1}{2} \cdot (a^2S_A+b^2S_B+c^2S_C)=S_{BC}+S_{CA}+S_{AB}$, (and also by the Conway identites, both are equal to $S^2$) and we get $u=2S_A$.

Since $H=(S_{BC} : S_{CA} : S_{AB}), D(0: S_{CA} : S_{AB})=(0: S_C: S_B)$, meaning $D'=(0: S_B: S_C)$.

Let $D'H$ have equation $ux+vy+wz$=0. By using $D'$ and $H$, we can find the ratio $u: v: w$ and find that the line has equation $S_A(S_C^2-S_B^2)x-S_BS_C^2y+S_B^2S_Cz=0$.

The equation of $BC$ is $x=0$, so the point at infinity on $BC$ is $(0: -1: 1)$.
Since $AP$ is parallel to $BC$, it meets it at $(0: -1: 1)$. Additionally using $A=(1, 0, 0)$, we find that $AP$ has equation $y+z=0$

P is the intersection of $S_A(S_C^2-S_B^2)x-S_BS_C^2y+S_B^2S_Cz=0$ and $y+z=0$ and we can solve this to find that $P=(-S_{BC} : S_A(S_B-S_C): S_A(S_C-S_B))$

Let circle $AHP$ have equation $-a^2yz-b^2zx-c^2xy+(ux+vy+wz)(x+y+z)=0$
Using $A=(1, 0, 0)$ gives $u=0$. Using $H=(S_{BC} : S_{CA} : S_{AB})$ and the identity $\frac{1}{2} \cdot (a^2S_A+b^2S_B+c^2S_C)=S_{BC}+S_{CA}+S_{AB}$ gives $S_Cv+S_Bw=0$.
Using $P=(-S_{BC} : S_A(S_B-S_C): S_A(S_C-S_B))$, we get (after some simplifications) that $v-w=\frac{a^2S_A(S_B-S_C)}{S_{BC}}+c^2-b^2$.
We can solve these equations to find that $v=\frac{S_AS_B}{S_C}-S_A+S_B$ and $w=S_C-S_A+\frac{S_AS_C}{S_B}$.

We have that circle $BHC$ is $$-a^2yz-b^2zx-c^2xy+2S_A(x+y+z)=0$$and that cirlce $AHP$ is $$-a^2yz-b^2zx-c^2xy+((\frac{S_AS_B}{S_C}-S_A+S_B)y+(S_C-S_A+\frac{S_AS_C}{S_B})z))(x+y+z)=0$$.

These circles meet at $H$ and $G$, so we have that $GH$ is their radical axis.

By the Barycentric Radical Axis theorem the two circles $-a^2yz-b^2zx-c^2xy+(u_1x+v_1y+w_1z)(x+y+z)=0, -a^2yz-b^2zx-c^2xy+(u_2x+v_2y+w_2z)(x+y+z)=0$ have radical axis $(u_1-u_2)x+(v_1-v_2)y+(w_1-w_2)z=0$
So GH is $$2S_Ax+(S_A-S_B-\frac{S_AS_B}{S_C})y+(S_A-S_C-\frac{S_AS_C}{S_B})z=0$$which we write as $$2S_AS_BS_Cx+(S_AS_BS_C-S_B^2S_C-S_AS_B^2)y+(S_AS_BS_C-S_BS_C^2-S_AS_C^2)z=0$$
Choose the point $P'$ on this with $x=0$. We find $P'=(0 : S_AS_C^2+S_BS_C^2-S_AS_BS_C : S_AS_BS_C-S_B^2S_C-S_AS_B^2)$ $$=(0 , \frac{S_AS_C^2+S_BS_C^2-S_AS_BS_C}{(S_A+S_B)S_C^2-(S_A+S_C)S_B^2} , \frac{S_AS_BS_C-S_B^2S_C-S_AS_B^2)}{(S_A+S_B)S_C^2-(S_A+S_C)S_B^2}=(0 :  \frac{c^2S_C^2-S_AS_BS_C}{c^2S_C^2-b^2S_B^2} , \frac{S_AS_BS_C-b^2S_B^2}{c^2S_C^2-b^2S_B^2}) $$.

Shift the circumcenter of the triangle to the zero vector so that $\vec H= \vec A+\vec B+ \vec C$. We have $\overrightarrow{P'H}=\vec A+ \frac{S_AS_BS_C-b^2S_B^2}{c^2S_C^2-b^2S_B^2}\vec B + \frac{c^2S_C^2-S_AS_BS_C}{c^2S_C^2-b^2S_B^2}\vec C$

We also have $\vec H= \frac{S_{BC}}{S_{BC}+S_{CA}+S_{AB}}\vec A + \frac{S_{CA}}{S_{BC}+S_{CA}+S_{AB}}\vec B+ \frac{S_{AB}}{S_{BC}+S_{CA}+S_{AB}}\vec C, \vec M =\frac{1}{2}\vec B+\frac{1}{2}\vec C$ giving $$\overrightarrow{MH}=\frac{S_{BC}}{S_{BC}+S_{CA}+S_{AB}}\vec A+\frac{S_{CA}-S_{BC}-S_{AB}}{2S_{BC}+2S_{CA}+2S_{AB}}\vec B+\frac{S_{AB}-S_{BC}-S_{CA}}{2S_{BC}+2S_{CA}+2S_{AB}}\vec C$$
The sum of the coefficients of this vector is $0$, so by the Generalised perpendicularity criterion, $MH\perp HP' \Leftrightarrow a^2(z_1y_2+y_1z_2)+b^2(x_1z_2+z_1x_2)+c^2(y_1x_2+x_1y_2)=0$ where $$(x_1,y_1,z_1)=(1, \frac{S_AS_BS_C-b^2S_B^2}{c^2S_C^2-b^2S_B^2}, \frac{c^2S_C^2-S_AS_BS_C}{c^2S_C^2-b^2S_B^2}), (x_2,y_2.z_2)=(\frac{S_{BC}}{S_{BC}+S_{CA}+S_{AB}}, \frac{S_{CA}-S_{BC}-S_{AB}}{2S_{BC}+2S_{CA}+2S_{AB}},\frac{S_{AB}-S_{BC}-S_{CA}}{2S_{BC}+2S_{CA}+2S_{AB}}) $$.

It is sufficient to show that $$a^2((c^2S_C^2-S_AS_BS_C)(S_{CA}-S_{BC}-S_{AB})+(S_AS_BS_C-b^2S_B^2)(S_{AB}-S_{BC}-S_{CA}))$$$$+b^2((c^2S_C^2-b^2S_B^2)(S_{AB}-S_{BC}-S_{CA})+(c^2S_C^2-S_AS_BS_C)(2S_{BC}))$$$$+c^2((S_AS_BS_C-b^2S_B^2)(2S_{BC})+(c^2S_C^2-b^2S_B^2)(S_{CA}-S_{BC}-S_{AB}))=0$$
Using $S_B+S_C=a^2$ and cyclic variations, we can express everything in terms of $S_A, S_B, S_C$, and we show that this expression is equal to 0:

Replace $S_A, S_B, S_C$ with $A, B, C$ respectively.

The above is $$(B+C)(((A+B)C^2-ABC)(CA-BC-AB)+(ABC-(A+C)B^2)(AB-BC-CA))$$$$+(A+C)(((A+B)C^2-(A+C)B^2)(AB-BC-CA)+((A+B)C^2-ABC)(2BC)) $$$$+(A+B)((ABC-(A+C)B^2)(2BC)+((A+B)C^2-(A+C)B^2)(CA-BC-AB)) $$$$=(B+C)(C(AC+BC-AB)(CA-BC-AB)+B(AC-AB-BC)(AB-BC-CA))$$$$+(A+C)((AC^2+BC^2-AB^2-B^2C)(AB-BC-CA)+2BC^2(AC+BC-AB))$$$$+(A+B)((2B^2C(AC-AB-BC)+((AC^2+BC^2-AB^2-B^2C)(CA-BC-AB))$$
Using $AC^2+BC^2-AB^2-B^2C=C(AC+BC-AB)+B(AC-AB-BC)$, we can factorise the first line in the above expression as $$(B+C)(AC+BC-AB)(AC-BC-AB)(C-B)$$, the second line as $$(A+C)(AC+BC-AB)(AC-BC-AB)(-B-C)$$and the third as $$(A+B)(AC+BC-AB)(AC-BC-AB)(B+C)$$.

So the expression is the sum of these, which is $(B+C)(AC+BC-AB)(AC-BC-AB)(C-B-A-C+A+B)=0$

This implies $MH\perp HP' $ which shows $MH\perp HG$ as required.
This post has been edited 2 times. Last edited by Googolplexian, Jul 29, 2020, 8:39 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
dolly33
88 posts
#13 • 1 Y
Y by TheRealGraceWu
[asy]/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(10cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -9.713265938717898, xmax = 13.883674226637623, ymin = -10.427071492316575, ymax = 8.290048185585707;  /* image dimensions */
pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); 
 /* draw figures */
draw((0.9488075920872171,4.513200822008997)--(-4.48,-0.66), linewidth(1.2) + wrwrwr); 
draw((-4.48,-0.66)--(2.42,-0.56), linewidth(1.2) + wrwrwr); 
draw((2.42,-0.56)--(0.9488075920872171,4.513200822008997), linewidth(1.2) + wrwrwr); 
draw((0.9488075920872171,4.513200822008997)--(1.0226257460407102,-0.5802518007820187), linewidth(1.2) + wrwrwr); 
draw(circle((-1.0040302689482739,-2.4019114425691224), 3.888009908030206), linewidth(1.2) + wrwrwr); 
draw(circle((-1.0559697310517269,1.1819114425691228), 3.888009908030206), linewidth(1.2) + wrwrwr); 
draw((1.00074705419067,0.9293779368707521)--(2.7449862391248985,-1.371622033162286), linewidth(1.2) + wrwrwr); 
draw((-4.753046777021447,-3.432200851975958)--(2.6930467770214452,2.212200851975957), linewidth(1.2) + wrwrwr); 
draw(circle((5.847659023735562,2.7919108533615655), 5.192454574238403), linewidth(1.2) + wrwrwr); 
draw((-4.753046777021447,-3.432200851975958)--(8.950331808346226,6.955443739885415), linewidth(1.2) + wrwrwr); 
draw((0.9488075920872171,4.513200822008997)--(10.694570993280454,4.654443769852377), linewidth(1.2) + wrwrwr); 
draw((-3.0826257460407103,-0.6397481992179815)--(10.694570993280454,4.654443769852377), linewidth(1.2) + wrwrwr); 
 /* dots and labels */
dot((0.9488075920872171,4.513200822008997),dotstyle); 
label("$A$", (0.8151138801022,4.7471648179827755), NE * labelscalefactor); 
dot((-4.48,-0.66),dotstyle); 
label("$B$", (-4.966868879261028,-0.6005836614178768), NE * labelscalefactor); 
dot((2.42,-0.56),dotstyle); 
label("$C$", (2.603267277901804,-0.650718803412258), NE * labelscalefactor); 
dot((-1.03,-0.61),linewidth(4pt) + dotstyle); 
label("$M$", (-1.223715227669311,-0.48360166343098754), NE * labelscalefactor); 
dot((1.0226257460407102,-0.5802518007820187),linewidth(4pt) + dotstyle); 
label("$D$", (1.0825013040722342,-0.45017823543473345), NE * labelscalefactor); 
dot((-3.0826257460407103,-0.6397481992179815),linewidth(4pt) + dotstyle); 
label("$D'$", (-3.011868625468915,-0.5003133774291146), NE * labelscalefactor); 
dot((1.00074705419067,0.9293779368707521),linewidth(4pt) + dotstyle); 
label("$H$", (0.7148435961134372,1.1207228803892082), NE * labelscalefactor); 
dot((-1.0559697310517269,1.1819114425691228),linewidth(4pt) + dotstyle); 
label("$O$", (-1.357408939654328,0.467588844154296), NE * labelscalefactor); 
dot((-3.06074705419067,-2.1493779368707515),linewidth(4pt) + dotstyle); 
label("$A'$", (-3.1789857654501863,-2.5725659131968674), NE * labelscalefactor); 
dot((2.7449862391248985,-1.371622033162286),linewidth(4pt) + dotstyle); 
label("G", (2.8038078458793296,-1.2356287933467043), NE * labelscalefactor); 
dot((-4.753046777021447,-3.432200851975958),linewidth(4pt) + dotstyle); 
label("$T'$", (-5.300832875234808,-3.508421897091982), NE * labelscalefactor); 
dot((2.6930467770214452,2.212200851975957),linewidth(4pt) + dotstyle); 
label("$T$", (2.703537561890567,2.40752485824499), NE * labelscalefactor); 
dot((10.694570993280454,4.654443769852377),linewidth(4pt) + dotstyle); 
label("$P$", (10.758583708987848,4.78058824597903), NE * labelscalefactor); 
dot((5.821689292683837,4.583822295930688),linewidth(4pt) + dotstyle); 
label("$N$", (5.728357795551579,4.78058824597903), NE * labelscalefactor); 
dot((8.950331808346226,6.955443739885415),linewidth(4pt) + dotstyle); 
label("$L$", (9.020565453182625,7.086804777720561), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */[/asy]

Let $A'$ be the antipode of $A$ and let $T'$ be the reflection of $T$ wrt $M$.

Claim. If $HG\perp HT$, $HG=AT$.
pf)
note that $(BHC)$ has the same radius with $(ABC)$. Since $HT'=TA'$, by Pythagorean thm, we get $AT=HG$.

Now, let $N=MH\cap AP, L=MH\cap (AHP)$

note that $N$ is the midpoint of $AP$ since $\triangle AHP\sim \triangle DHD'$

Since $\angle ATN=\angle NLP=90$ and $AN=NP$, $ATPL$ is a parallelogram.

Redefine $G$ as the intersection of $(AHP)$ and a line perpendicular to $AP$ passing through $T$.

Note that $AN^2=NP^2=NT\cdot NH$. Therefore $\angle ATP=180-\angle AHP=180-\angle AGP$.

Since $GT\perp AP$, $T$ is the orthocenter of $\triangle AGP$.

Let $O'$ be the midpoint of $HP$. (the circumcenter of $(AHP)$)

It is well-known that $GT=2O'N$. Since $AH=2O'N$ ($N, O'$ are midpoints of $AP, PH$), $AH=GT$.

Hence, $AHGT$ is a parallelogram.

Then, we obtain that $AT=HG$.

Note that since $L$ is the reflection of $T$ wrt $N$, $L$ is the antipode of $G$.

$\therefore$ $GL$ is the diameter of $(AHP)$. $\angle GHL=90$

Now by Claim, we obtain that $B, H, C, G$ are cyclic. We are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Plops
946 posts
#14
Y by
Phantom Points
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
itslumi
284 posts
#15
Y by
Complex numbers work here very well :D
Z K Y
G
H
=
a