Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
A beautiful collinearity regarding three wonderful points
math_pi_rate   10
N an hour ago by alexanderchew
Source: Own
Let $\triangle DEF$ be the medial triangle of an acute-angle triangle $\triangle ABC$. Suppose the line through $A$ perpendicular to $AB$ meet $EF$ at $A_B$. Define $A_C,B_A,B_C,C_A,C_B$ analogously. Let $B_CC_B \cap BC=X_A$. Similarly define $X_B$ and $X_C$. Suppose the circle with diameter $BC$ meet the $A$-altitude at $A'$, where $A'$ lies inside $\triangle ABC$. Define $B'$ and $C'$ similarly. Let $N$ be the circumcenter of $\triangle DEF$, and let $\omega_A$ be the circle with diameter $X_AN$, which meets $\odot (X_A,A')$ at $A_1,A_2$. Similarly define $\omega_B,B_1,B_2$ and $\omega_C,C_1,C_2$.
1) Show that $X_A,X_B,X_C$ are collinear.
2) Prove that $A_1,A_2,B_1,B_2,C_1,C_2$ lie on a circle centered at $N$.
3) Prove that $\omega_A,\omega_B,\omega_C$ are coaxial.
4) Show that the line joining $X_A,X_B,X_C$ is perpendicular to the radical axis of $\omega_A,\omega_B,\omega_C$.
10 replies
math_pi_rate
Nov 8, 2018
alexanderchew
an hour ago
No more topics!
MP = NQ wanted, incircles related
parmenides51   65
N May 26, 2025 by ezpotd
Source: IMO 2019 SL G2
Let $ABC$ be an acute-angled triangle and let $D, E$, and $F$ be the feet of altitudes from $A, B$, and $C$ to sides $BC, CA$, and $AB$, respectively. Denote by $\omega_B$ and $\omega_C$ the incircles of triangles $BDF$ and $CDE$, and let these circles be tangent to segments $DF$ and $DE$ at $M$ and $N$, respectively. Let line $MN$ meet circles $\omega_B$ and $\omega_C$ again at $P \ne M$ and $Q \ne N$, respectively. Prove that $MP = NQ$.

(Vietnam)
65 replies
parmenides51
Sep 22, 2020
ezpotd
May 26, 2025
MP = NQ wanted, incircles related
G H J
G H BBookmark kLocked kLocked NReply
Source: IMO 2019 SL G2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
john0512
4191 posts
#56 • 1 Y
Y by sophie.germain
WLOG $AC>AB$ (this doesn't really matter but it makes the explanation more smooth). The idea here is that $\omega_c$ is "larger" than $\omega_b$, but the arc $NQ$ has a smaller measure than arc $MP$ to compensate. Thus we can essentially split the problem into two parts.

First, we find the ratio between the radiuses of $\omega_b$ and $\omega_c$. Then, we find the ratio of the sines of half the arc measures, and show that these multiply to 1. This would solve the problem.

\begin{claim}
We have $$\frac{R_{\omega_c}}{R_{\omega_b}}=\frac{\cos\gamma}{\cos\beta}.$$\end{claim}

Note that $ABDE$ is cyclic, so there is a homothety at $C$ followed by a reflection across the angle bisector that sends $\triangle ACB$ to $\triangle DCE$. Since $$\frac{CD}{AC}=\cos\gamma,$$this homothety has ratio $\cos\gamma$, so $R_{\omega_c}=r\cos\gamma$. Similarly, $R_{\omega_b}=r\cos\beta$, which shows the claim.

Now, we find the "ratio of sines of half the arc measures" we were looking for. Since $NE$ is tangent to $\omega_c$, this ratio is equal to $$\frac{\sin\angle ENQ}{\sin\angle FMP}=\frac{\sin\angle DNM}{\sin\angle DMN}=\frac{DM}{DN}.$$However, $$DM=\frac{DB+DF-FB}{2}=\frac{c\cos\beta+b\cos\beta-a\cos\beta}{2}=\cos\beta\cdot \frac{b+c-a}{2}.$$Similarly, $$DN=\cos\gamma\cdot \frac{b+c-a}{2}.$$Thus, $$\frac{DM}{DN}=\frac{\cos\beta}{\cos\gamma},$$which is the reciprocal of the ratio of radii, so we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ihatemath123
3451 posts
#57
Y by
Unlike post #53 this is actually me now :P

Because $\angle FDB = \angle EDC$, it follows that the ratio of the radius of $\omega_B$ to the radius of $\omega_C$ is $\frac{MD}{DN}$. Now, letting $X$ and $Y$ be the tangency points of $\omega_B$ and $\omega_C$ with $\overline{BC}$, it follows that
\[ \frac{MP}{NQ} = \frac{\text{radius} (\omega_B) \cdot \sin ( \angle MXP )}{\text{radius} (\omega_C) \cdot \sin ( \angle NYQ )} = \frac{MD}{DN} \cdot \frac{\sin ( \angle DMN )}{\sin (\angle DNM)} = 1.\]
remark
This post has been edited 3 times. Last edited by ihatemath123, Feb 7, 2024, 6:07 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Shreyasharma
685 posts
#58
Y by
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(6.5cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -3.465219736921475, xmax = 2.4572223583383397, ymin = -4.131866009456642, ymax = 1.1208129987426592;  /* image dimensions */
pen qqwwzz = rgb(0,0.4,0.6); pen ccqqqq = rgb(0.8,0,0); 
 /* draw figures */
draw((-1.436498872725946,0.40140832631925505)--(-2.8555447851977687,-2.2932873258036057), linewidth(0.7) + qqwwzz); 
draw((-2.8555447851977687,-2.2932873258036057)--(1.2688308139529472,-2.327232803973365), linewidth(0.7) + qqwwzz); 
draw((1.2688308139529472,-2.327232803973365)--(-1.436498872725946,0.40140832631925505), linewidth(0.7) + qqwwzz); 
draw((-1.436498872725946,0.40140832631925505)--(-1.4587720556310186,-2.3047833976476415), linewidth(0.7) + blue); 
draw((-2.8555447851977687,-2.2932873258036057)--(-0.7926360753077117,-0.2480025458385933), linewidth(0.7) + blue); 
draw((1.2688308139529472,-2.327232803973365)--(-1.9741056144780595,-0.6194793960715617), linewidth(0.7) + blue); 
draw((-1.9741056144780595,-0.6194793960715617)--(-1.4587720556310186,-2.3047833976476415), linewidth(0.7) + ccqqqq); 
draw((-1.4587720556310186,-2.3047833976476415)--(-0.7926360753077117,-0.2480025458385933), linewidth(0.7) + ccqqqq); 
draw(circle((-2.0886459647031916,-1.8347001573988362), 0.4648833474369896), linewidth(0.7) + ccqqqq); 
draw(circle((-0.4720251699614325,-1.593345575866262), 0.7195348249648241), linewidth(0.7) + ccqqqq); 
draw((-1.6440820352406826,-1.6987610557942068)--(-1.156553700140246,-1.3716452021444483), linewidth(0.7) + blue); 
draw(circle((-0.788013908035324,-1.6610761378174324), 2.1620302759755687), linewidth(0.7) + qqwwzz); 
draw((-2.0886459647031916,-1.8347001573988362)--(-1.6440820352406826,-1.6987610557942068), linewidth(0.7) + blue); 
draw((-2.0886459647031916,-1.8347001573988362)--(-2.3829807767200273,-2.194538378213741), linewidth(0.7) + blue); 
draw((-0.4720251699614325,-1.593345575866262)--(-1.156553700140246,-1.3716452021444483), linewidth(0.7) + blue); 
draw((-0.4720251699614325,-1.593345575866262)--(-0.4176549586609028,-0.8758678797249145), linewidth(0.7) + blue); 
draw((-0.4720251699614325,-1.593345575866262)--(-0.4779470667117702,-2.3128560312983137), linewidth(0.7) + blue); 
draw((-2.0886459647031916,-1.8347001573988362)--(-2.0924720355047097,-2.2995677599551367), linewidth(0.7) + blue); 
draw((-2.3829807767200273,-2.194538378213741)--(-1.6440820352406826,-1.6987610557942068), linewidth(0.7) + ccqqqq); 
draw((-0.4176549586609028,-0.8758678797249145)--(-1.156553700140246,-1.3716452021444483), linewidth(0.7) + ccqqqq); 
draw((-1.9741056144780595,-0.6194793960715617)--(-0.7926360753077117,-0.2480025458385933), linewidth(0.7) + ccqqqq); 
 /* dots and labels */
dot((-1.436498872725946,0.40140832631925505),dotstyle); 
label("$A$", (-1.4931395418506677,0.48825897414250724), NE * labelscalefactor); 
dot((-2.8555447851977687,-2.2932873258036057),dotstyle); 
label("$B$", (-3.1504944029878994,-2.407846216918973), NE * labelscalefactor); 
dot((1.2688308139529472,-2.327232803973365),dotstyle); 
label("$C$", (1.2975399794759466,-2.4388537671444706), NE * labelscalefactor); 
dot((-1.4471850279001193,-0.8969595278228518),linewidth(4pt) + dotstyle); 
label("$H$", (-1.7413561523719848,-0.7706475650126973), NE * labelscalefactor); 
dot((-1.4587720556310186,-2.3047833976476415),linewidth(4pt) + dotstyle); 
label("$D$", (-1.4807365217558826,-2.6450552771895704), NE * labelscalefactor); 
dot((-0.7926360753077117,-0.2480025458385933),linewidth(4pt) + dotstyle); 
label("$E$", (-0.7675628663057479,-0.20010864086354052), NE * labelscalefactor); 
dot((-1.9741056144780595,-0.6194793960715617),linewidth(4pt) + dotstyle); 
label("$F$", (-2.1194920566373074,-0.5721992435695124), NE * labelscalefactor); 
dot((-2.0886459647031916,-1.8347001573988362),linewidth(4pt) + dotstyle); 
label("$X$", (-2.1070890365425226,-1.750486152138423), NE * labelscalefactor); 
dot((-0.4720251699614325,-1.593345575866262),linewidth(4pt) + dotstyle); 
label("$Y$", (-0.4264798136991617,-1.7532770918678257), NE * labelscalefactor); 
dot((-1.6440820352406826,-1.6987610557942068),linewidth(4pt) + dotstyle); 
label("$M$", (-1.7357742729406946,-1.4954484010109347), NE * labelscalefactor); 
dot((-1.156553700140246,-1.3716452021444483),linewidth(4pt) + dotstyle); 
label("$N$", (-1.1334519591019039,-1.6458363206501384), NE * labelscalefactor); 
dot((-2.3829807767200273,-2.194538378213741),linewidth(4pt) + dotstyle); 
label("$P$", (-2.528791719765211,-2.1466069557463855), NE * labelscalefactor); 
dot((-0.4176549586609028,-0.8758678797249145),linewidth(4pt) + dotstyle); 
label("$Q$", (-0.682293404125694,-0.8416551152381949), NE * labelscalefactor); 
dot((-0.4779470667117702,-2.3128560312983137),linewidth(4pt) + dotstyle); 
label("$T_C$", (-0.5070994443152639,-2.663659807324869), NE * labelscalefactor); 
dot((-2.0924720355047097,-2.2995677599551367),linewidth(4pt) + dotstyle); 
label("$T_B$", (-2.1194920566373074,-2.657458297279769), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Let the center of $\omega_B$ be $X$ and the center of $\omega_C$ be $Y$. Also let $T_B$ and $T_C$ be the tangency points of $\omega_B$ and $\omega_C$ to $\overline{BC}$. Note that we have,
\begin{align*}
\frac{MP}{NQ} &= \frac{2r_1\cos(\angle XMP)}{2r_2\cos(\angle YNQ)}\\
&= \frac{r_1\cos(90 - \angle PMD)}{r_2 \cos(90 - \angle QNE)}\\
&= \frac{r_1 \sin(\angle PMD)}{r_2 \sin(\angle QNE)}\\
&= \frac{r_1 \sin(180 - \angle NMD)}{r_2 \sin(180 - \angle MND)}\\
&= \frac{r_1 \sin(\angle NMD)}{r_2 \sin (\angle MND)}\\
&= \frac{r_1 \cdot ND}{r_2 \cdot MD}\\
&= \frac{r_1 \cdot r_2 \cdot \tan(\angle NYD)}{r_1 \cdot r_2 \cdot \tan(\angle MXD)}\\
&= \frac{\tan(\angle DYT_C)}{\tan(\angle DXT_B)}\\
&= \frac{\tan(\angle XDT_B)}{\tan(\angle YDT_C)}\\
&= \frac{\tan\left(\frac{1}{2} \angle FDB \right)}{\tan\left( \frac{1}{2} \angle CDE \right)}\\
\end{align*}However note that,
\begin{align*}
\angle FDB &= 180 - \angle FDC\\
&= \angle A\\
&= 180 - \angle EDB\\
&= \angle EDC
\end{align*}and hence the ratio is simply $1$, as desired. $\square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
shendrew7
806 posts
#59
Y by
Let $r_b$, $r_c$ be the radii of $\omega_b$, $\omega_c$. Thus we have
\[\frac{MP}{NQ} = \frac{r_b \cdot \sin (180-\angle DMN)}{r_c \cdot \sin (180-\angle DNM)} = \frac{r_1/r_2}{DM/DN} = 1\]
from Law of Sines and the similarity $\triangle DFB \sim \triangle DCE$. $\blacksquare$
This post has been edited 1 time. Last edited by shendrew7, Mar 17, 2024, 3:41 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
trk08
614 posts
#60
Y by
Let $r_{B,C}$ and $O_{B,C}$ be the radii and center, respectively, of $\omega_{B,C}$, respectively. Note that, by LoS:
\[MP=2r_B\cos{\angle PMO_B}=2r_B\sin{\angle NMD}\]\[NQ=2r_C\cos{\angle QNO_C}=2r_C\sin{\angle MND}\]
Note that:
\[r_B=MD\tan{\angle BDF/2}\]\[r_C=DN\tan{\angle CDE/2}.\]By angle chasing on cyclic quads $BDHF$, $CDHE$ ($H$ is orthocenter):
\[\angle BDF=\angle BHF=\angle CHE=\angle CDE.\]Therefore, using LoS:
\[r_B/r_C=MD/DN=\sin{\angle MND}/\sin{\angle NMD}.\]
Therefore:
\[MP/NQ=1\]$\square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fearsum_fyz
56 posts
#62 • 1 Y
Y by GeoKing
Let the incenters of $\Delta{BFD}$ and $\Delta{CED}$ be $I_1$ and $I_2$ and their inradii be $r_1$ and $r_2$ respectively. Then
$\frac{MP}{NQ} = \frac{2 r_1 \sin{\widehat{MP}}}{2 r_2 \sin{\widehat{NQ}}} \overset{\text{(Alt Segt Thm)}}{=} \frac{r_1 \sin{\angle{DMN}}}{r_2 \sin{\angle{DNM}}} \overset{\text{(LOS)}}{=} \frac{r_1 DN}{r_2 DM} \overset{\Delta{DI_1M} \overset{\text{(AA)}}{\sim} \Delta{DI_2N} }{=} 1$ as desired.
Attachments:
This post has been edited 1 time. Last edited by fearsum_fyz, Jun 23, 2024, 8:04 AM
Reason: then
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ritwin
158 posts
#63
Y by
trig? more like complex numbers.

Solution
This post has been edited 1 time. Last edited by Ritwin, Sep 9, 2024, 2:54 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Markas
150 posts
#64
Y by
Let $I_1$ be the incenter in $\triangle BFD$ and $I_2$ be the incenter in $\triangle DEC$. Let $I_1M = I_1P = r_b$ and $I_2N = I_2Q = r_c$. Also let $\angle PI_1M = 2x$ and $\angle NI_2Q = 2y$, where obviously $\angle I_1MP = \angle I_1PM = 90 - x$ and $\angle I_2NQ = \angle I_2QN = 90 - y$. Also by some angle chase we get that $\angle PMD = x$, $\angle DMN = 180 - x$, $\angle DNM = y$. Now by law of sines on $\triangle MPI_1$ we get that $MP = \frac{\sin \angle PI_1M \cdot I_1M}{\sin \angle I_1MP} = \frac{\sin 2x \cdot r_b}{\sin (90 - x)} = \frac{2\sin x \cdot \cos x \cdot r_b}{\cos x} = 2\sin x \cdot r_b = 2\sin (180 - x) \cdot r_b = 2\sin \angle DMN \cdot r_b$. Now by law of sines on $\triangle NQI_2$ we get that $NQ = \frac{\sin \angle NI_2Q \cdot NI_2}{\sin \angle NQI_2} = \frac{\sin 2y \cdot r_c}{\sin (90 - y)} = \frac{2\sin y \cdot cos y \cdot r_c}{\cos y} = 2\sin y \cdot r_c = 2\sin \angle DNM \cdot r_c$ $\Rightarrow$ $\frac{MP}{NQ} = \frac{2\sin \angle DMN \cdot r_b}{2\sin \angle DNM \cdot r_c} = \frac{\sin \angle DMN \cdot r_b}{\sin \angle DNM \cdot r_c}$. Now by law of sines on $\triangle DNM$ we get that $\frac{\sin \angle DMN}{\sin \angle DNM} = \frac{DN}{DM}$ $\Rightarrow$ $\frac{MP}{NQ} = \frac{DN}{DM} \cdot \frac{r_b}{r_c}$. Also $\triangle DBE \sim \triangle DEC$ $\Rightarrow$ $\triangle DI_1M \sim \triangle DI_2N$ $\Rightarrow$ $\frac{DN}{DM} = \frac{r_c}{r_b}$ $\Rightarrow$ $\frac{MP}{NQ} = \frac{DN}{DM} \cdot \frac{r_b}{r_c} = \frac{r_c}{r_b} \cdot \frac{r_b}{r_c} = 1$ $\Rightarrow$ MP = NQ and we are ready.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathandski
774 posts
#65
Y by
$                $
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SimplisticFormulas
131 posts
#66
Y by
Okayy let’s bashh!
We shall show that $Pow_{\omega_{C}}(M)=Pow_{\omega_{B}}(N)$ (which is equivalent to proving the problem statement).
Let $r$ be the inradius of $\triangle ABC$. Let $O_{1}$ be the incentre of $\triangle CED$. Let the foot of perpendicular from $O_{1},M$ on $BC$ be $X,Y$ respectively.
Observe that $\triangle DBF \sim \triangle ABC \sim \triangle DEC$.
Therefore, (skipping a few details) we get
$DM=(s-a)cosC=DX, DN=(s-a)cosB,DY=DMcosA=cosAcosB(s-a) $, $MY=MDsinA=sinAcosB(s-a),O_{1}X=rcosC$
Hence, $$Pow_{\omega_{C}}(M)=MO_{1}^2-(rcosC)^2 $$$$=(s-a)^2(cosAcosB+cosC)^2 + (rcosC-sinAcosB(s-a))^2-r^2cos^2C$$$$=(s-a)^2cos^2Acos^2B+(s-a)^2cos^2C+2cosAcosBcosC(s-a)+(s-a)^2sin^2Acos^2B-2r(s-a)sinAcosBcosC$$$$=(s-a)^2(cos^2Acos^2B+cos^2C+sin^2Acos^2B)+2(s-a)cosBcosC(cosA-rsinA)$$$$=(s-a)^2(cos^2B+cos^2C)+ 2(s-a)cosBcosC(cosA-rsinA)$$which is symmetric in $B$ and $C$, so we are done.$\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
maths_enthusiast_0001
133 posts
#67 • 1 Y
Y by L13832
Very nice and simple :-D
Claim: $\color{blue}{MP=NQ}$
Proof: Note that we have, $BF=a \cos B,FD=b \cos B,DB=c \cos B$ and $\angle{FDB}=\angle {A}$. Also, $EC=a \cos C,CD=b \cos C, DE=c \cos C$ and $\angle{EDC}=\angle {A}$. Clearly, $\Delta BFD \sim \Delta ECD$. Denote the inradii of $\Delta BFD$ and $\Delta ECD$ by $r_{1}$ and $r_{2}$ respectively. Thus, $\boxed{\frac{r_1}{r_2}=\frac{\cos B}{\cos C}}$. Let the incircles of triangles $BDF$ and $CDE$ be tangent to $BC$ at $X$ and $Y$ respectively. By alternate segment theorem, $\angle PXM=\alpha=\angle{PMF}=\angle{DMN}$ and $\angle{QYN}=\beta=\angle{QNE}=\angle{DNM}$. Denote the semi-perimeter of $\Delta ABC$ by $s$. Now note that, $DM=(s-a)\cos B$ and $DN=(s-a)\cos C$ implying, $\boxed{\frac{DM}{DN}=\frac{\cos B}{\cos C}}$. Thus by sine rule in triangle $DMN$ we have,
$$\frac{DM}{DN}=\frac{\sin \angle DNM}{\sin \angle DMN}=\frac{\sin \beta}{\sin \alpha} \implies \boxed{\frac{\sin \beta}{\sin \alpha}=\frac{\cos B}{\cos C}}$$Now note that $MP=2r_{1}\sin \alpha$ and $NQ=2r_{2}\sin \beta$ implying, $\frac{NQ}{MP}=\left(\frac{r_{2}}{r_{1}}\right)\left(\frac{\sin \beta}{\sin \alpha}\right)=\frac{\cos C.\cos B}{\cos B.\cos C}=1 \implies \boxed{MP=NQ}$ as desired. $\blacksquare$ ($\mathcal{QED}$)
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AngeloChu
471 posts
#68
Y by
let the points of tangency of $\omega_B$ and $\omega_C$ to $BC$ be $R$ and $S$ respectively
a simple angle chase yields that $MPR=NQS=MDN$ and $PMR=QSN$, and $FMP=MND$
thus, $MPR$ is similar to $NMD$ and $NSQ$
then more angle chase gives that $DMR$ is similar to $DSN$
then, our first similarity condition yields $MP*DN/DM*NQ/QS=NQ$, but our second condition yields $DN/DM=QS/NQ$ so $MP=MP*DN/DM*DM/DN=NQ$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mananaban
36 posts
#70 • 1 Y
Y by buratinogigle
My first instinct was trying to prove $PM \cdot MQ = QN \cdot NP$ or $PM \cdot MN = QN \cdot NM$ with some synthetic power stuff, but alas. Kudos to #20 for the power solution!

Let $r(\omega)$ denote the radius of circle $\omega$.
First observe the easy similarity chain of $\triangle BDF \sim \triangle BAC \sim \triangle EDC$. Note how $r(\omega_B) / r(\omega_C)$ is the scale factor between $\triangle BDF \sim \triangle EDC$, which can be expressed as $DM/DN$.

Now the proof is an easy trigbash/lengthchase. Note that the first step below is due to the angle intercepted by $MP,NQ$ on $\omega_B,\omega_C$ being equal to $\angle PMF,\angle ENQ$ respectively.
\begin{align*}
	\frac{MP}{NQ} &= \frac{r(\omega_B) \cdot \sin(\angle PMF)}{r(\omega_C) \cdot \sin(\angle ENQ)} \\
    &= \frac{r(\omega_B)}{r(\omega_C)} \cdot \frac{\sin(\angle DMN)}{\sin(\angle DNM)} \\
    &= \frac{DM}{DN} \cdot \frac{DN}{DM},
\end{align*}which is $1$. Thus, $MP=NQ$, as desired. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Giant_PT
54 posts
#71
Y by
Let $M'$ and $N'$ be the intersection between line $BC$ and circles $\omega_B$ and $\omega_C$ respectively. Also, let $r_B$ and $r_C$ be lengths of the radius of circles $\omega_B$ and $\omega_C$ respectively.

Since we have that $\triangle ABC \sim \triangle DBF \sim \triangle DEC$, we can calculate that $\frac{r_B}{r_C}=\frac{cosB}{cosC}$ and also that $MD=cosB\frac{(b+c-a)}{2}$ and $ND=cosC\frac{(b+c-a)}{2}.$ Therefore, $\frac{MD}{ND}=\frac{cosB}{cosC}$. Via angle chasing, we have that $\angle QN'N = \angle QNE = \angle MND$ and $\angle PM'M = \angle PMF = \angle DMN$.

Now, calculating ratios using los a few times, we have,
$$\frac{cosB}{cosC}=\frac{r_B}{r_C}=\frac{\frac{MP}{2sin\angle PM'M}}{\frac{NQ}{2sin \angle QN'N}}=\frac{MP}{NQ} \cdot \frac{sin\angle QN'N}{sin\angle PM'M}=\frac{MP}{NQ} \cdot \frac{sin\angle MND}{sin\angle DMN}=\frac{MP}{NQ} \cdot \frac{MD}{ND}=\frac{MP}{NQ} \cdot \frac{cosB}{cosC},$$which clearly implies $\frac{MP}{NQ}=1$ as desired.
Attachments:
This post has been edited 1 time. Last edited by Giant_PT, Apr 17, 2025, 7:28 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ezpotd
1324 posts
#72
Y by
The measure of arc $MP$ is $\angle FMP = \angle NMD$, so we have (using $BDE \sim BAC$ with a factor of $\cos B$)$MP= r\cos B \sin NMD$, symmetrically $NQ = r \cos C \sin MND$, so it remains to prove $\frac{\sin MND}{\sin NMD}=  \frac{\cos B}{\cos C}$, by LoS it is sufficient to prove $\frac{DM}{DN} = \frac{\cos B}{\cos C}$, which follows directly from the previous similarity, $MD = (s - a) \cos B, ND = (s - a) \cos C$.
Z K Y
N Quick Reply
G
H
=
a