Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
hard inequality omg
tokitaohma   3
N 2 hours ago by tokitaohma
1. Given $a, b, c > 0$ and $abc=1$
Prove that: $ \sqrt{a^2+1} + \sqrt{b^2+1} + \sqrt{c^2+1} \leq \sqrt{2}(a+b+c) $

2. Given $a, b, c > 0$ and $a+b+c=1 $
Prove that: $ \dfrac{\sqrt{a^2+2ab}}{\sqrt{b^2+2c^2}} + \dfrac{\sqrt{b^2+2bc}}{\sqrt{c^2+2a^2}} + \dfrac{\sqrt{c^2+2ca}}{\sqrt{a^2+2b^2}} \geq \dfrac{1}{a^2+b^2+c^2} $
3 replies
tokitaohma
Yesterday at 5:24 PM
tokitaohma
2 hours ago
Divisibilty...
Sadigly   5
N 2 hours ago by COCBSGGCTG3
Source: Azerbaijan Junior NMO 2025 P2
Find all $4$ consecutive even numbers, such that the sum of their squares divides the square of their product.
5 replies
Sadigly
Saturday at 9:07 PM
COCBSGGCTG3
2 hours ago
Diophantine involving cube
Sadigly   1
N 2 hours ago by mashumaro
Source: Azerbaijan Senior NMO 2020
$a;b;c;d\in\mathbb{Z^+}$. Solve the equation: $$2^{a!}+2^{b!}+2^{c!}=d^3$$
1 reply
Sadigly
Yesterday at 10:13 PM
mashumaro
2 hours ago
Old hard problem
ItzsleepyXD   2
N 2 hours ago by ItzsleepyXD
Source: IDK
Let $ABC$ be a triangle and let $O$ be its circumcenter and $I$ its incenter.
Let $P$ be the radical center of its three mixtilinears and let $Q$ be the isogonal conjugate of $P$.
Let $G$ be the Gergonne point of the triangle $ABC$.
Prove that line $QG$ is parallel with line $OI$ .
2 replies
ItzsleepyXD
Apr 25, 2025
ItzsleepyXD
2 hours ago
The Return of Triangle Geometry
peace09   9
N 3 hours ago by mathfun07
Source: 2023 ISL A7
Let $N$ be a positive integer. Prove that there exist three permutations $a_1,\dots,a_N$, $b_1,\dots,b_N$, and $c_1,\dots,c_N$ of $1,\dots,N$ such that \[\left|\sqrt{a_k}+\sqrt{b_k}+\sqrt{c_k}-2\sqrt{N}\right|<2023\]for every $k=1,2,\dots,N$.
9 replies
1 viewing
peace09
Jul 17, 2024
mathfun07
3 hours ago
Set Partition
Butterfly   0
3 hours ago
For the set of positive integers $\{1,2,…,n\}(n\ge 3)$, no matter how its elements are partitioned into two subsets, at least one of the subsets must contain three numbers $a,b,c$ ($a=b$ is allowed) such that $ab=c$. Find the minimal $n$.
0 replies
Butterfly
3 hours ago
0 replies
Points Lying on its Cevian Triangle's Thomson Cubic
Feuerbach-Gergonne   1
N 4 hours ago by golue3120
Source: Own
Given $\triangle ABC$ and a point $P$, let $\triangle DEF$ be the cevian triangle of $P$ with respect to $\triangle ABC$. Let $H$ be the orthocenter of $\triangle ABC$, and denote the isotomic conjugate of $H, P$ with respect to $\triangle ABC$ by $X, Q$, respectively. Let the centroid of $\triangle DEF$ be $M$, and denote the isogonal conjugate of $P$ with respect to $\triangle DEF$ by $R$. Prove that
$$
P, Q, X \text{ are collinear} \iff P, R, M \text{ are collinear}. 
$$or in brief
$$
P \in \text{ K007 of } \triangle ABC \iff P \in \text{ K002 of } \triangle DEF. 
$$
1 reply
Feuerbach-Gergonne
Jul 19, 2024
golue3120
4 hours ago
Areas of triangles AOH, BOH, COH
Arne   71
N 4 hours ago by EpicBird08
Source: APMO 2004, Problem 2
Let $O$ be the circumcenter and $H$ the orthocenter of an acute triangle $ABC$. Prove that the area of one of the triangles $AOH$, $BOH$ and $COH$ is equal to the sum of the areas of the other two.
71 replies
Arne
Mar 23, 2004
EpicBird08
4 hours ago
Problem 6
termas   68
N 4 hours ago by HamstPan38825
Source: IMO 2016
There are $n\ge 2$ line segments in the plane such that every two segments cross and no three segments meet at a point. Geoff has to choose an endpoint of each segment and place a frog on it facing the other endpoint. Then he will clap his hands $n-1$ times. Every time he claps,each frog will immediately jump forward to the next intersection point on its segment. Frogs never change the direction of their jumps. Geoff wishes to place the frogs in such a way that no two of them will ever occupy the same intersection point at the same time.

(a) Prove that Geoff can always fulfill his wish if $n$ is odd.

(b) Prove that Geoff can never fulfill his wish if $n$ is even.
68 replies
termas
Jul 12, 2016
HamstPan38825
4 hours ago
2n^2+4n-1 and 3n+4 have common powers
bin_sherlo   2
N 5 hours ago by Assassino9931
Source: Türkiye 2025 JBMO TST P5
Find all positive integers $n$ such that a positive integer power of $2n^2+4n-1$ equals to a positive integer power of $3n+4$.
2 replies
bin_sherlo
Yesterday at 7:13 PM
Assassino9931
5 hours ago
Perpendicularity
April   33
N May 4, 2025 by AshAuktober
Source: CGMO 2007 P5
Point $D$ lies inside triangle $ABC$ such that $\angle DAC = \angle DCA = 30^{\circ}$ and $\angle DBA = 60^{\circ}$. Point $E$ is the midpoint of segment $BC$. Point $F$ lies on segment $AC$ with $AF = 2FC$. Prove that $DE \perp EF$.
33 replies
April
Dec 28, 2008
AshAuktober
May 4, 2025
Perpendicularity
G H J
Source: CGMO 2007 P5
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
April
1270 posts
#1 • 5 Y
Y by canhhoang30011999, centslordm, mathematicsy, Adventure10, Mango247
Point $D$ lies inside triangle $ABC$ such that $\angle DAC = \angle DCA = 30^{\circ}$ and $\angle DBA = 60^{\circ}$. Point $E$ is the midpoint of segment $BC$. Point $F$ lies on segment $AC$ with $AF = 2FC$. Prove that $DE \perp EF$.
This post has been edited 1 time. Last edited by v_Enhance, Jan 25, 2016, 3:51 PM
Reason: \equal -> =
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SaYaT
138 posts
#2 • 4 Y
Y by canhhoang30011999, centslordm, Adventure10, endless_abyss
April wrote:
Point $ D$ lies inside triangle $ ABC$ such that $ \angle DAC = \angle DCA = 30^{\circ}$ and $ \angle DBA = 60^{\circ}$. Point $ E$ is the midpoint of segment $ BC$. Point $ F$ lies on segment $ AC$ with $ AF = 2FC$. Prove that $ DE \perp EF$.

Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vittasko
1327 posts
#3 • 3 Y
Y by centslordm, Adventure10, endless_abyss
Let $ (K)$ be, the circumcircle of the triangle $ \bigtriangleup ABD,$ with $ \angle ABD = 60^{o}.$

From the isosceles triangle $ \bigtriangleup DAC,$ with $ \angle DAC = \angle DCA = 30^{o}$ and $ AF = 2FC,$ it is easy to show that $ DF = FC$ and so, we have that $ \angle DFA = 60^{o}$ $ \Longrightarrow$ $ AD\perp DF.$

We denote the point $ B'\equiv (K)\cap DF$ and let $ K'$ be, the midpoint of the segment $ DF.$

Applying the Menelaos theorem in the equilateral triangle $ \bigtriangleup AB'F,$ we can say that the points $ K,\ K',\ C$ are collinear, because of $ \frac {KA}{KB'}\cdot \frac {K'B'}{K'F}\cdot \frac {CF}{CA} = 1$ $ ,(1)$

where $ K$ is the center of $ (K).$ $ ($ from $ AD\perp B'DF$ we have that $ AB'$ is a diameter of $ (K)$ and from $ AB' = B'F$ $ \Longrightarrow$ $ K'B' = 3K'F$ $ ).$

If we consider now, the triangle $ \bigtriangleup KAC,$ taken as its transversal the line segment $ B'F,$ applying again the Menelaos theorem,

we have that $ \frac {K'K}{K'C}\cdot \frac {FC}{FA}\cdot \frac {B'A}{B'K} = 1$ $ \Longrightarrow$ $ \frac {K'K}{K'C} = 1$ $ \Longrightarrow$ $ K'K = K'C$ $ ,(2)$

$ \bullet$ From $ (2)$ and because of $ EB = EC,$ we conclude that $ K'E\parallel KB$ and $ KB = 2K'E$ $ ,(3)$

From $ AB' = B'F$ $ \Longrightarrow$ $ AK = DF$ $ \Longrightarrow$ $ KB = 2K'F$ $ ,(4)$

From $ (3),$ $ (4)$ $ \Longrightarrow$ $ K'E = K'F = K'D$ $ ,(5)$

From $ (5)$ we conclude that $ DF\perp EF$ and the proof is completed.

Kostas Vittas.
Attachments:
t=247620.pdf (6kb)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
yetti
2643 posts
#4 • 2 Y
Y by centslordm, Adventure10
If $ M$ is midpoint of $ AC$ and $ G$ reflection of $ F$ in $ DM,$ then $ \frac{AC}{MC} = 2 = \frac{GC}{FC}.$ Since $ \frac{DC}{DM} = 2 = \frac{FM}{FC},$ $ DF$ bisects $ \angle CDM.$ $ \triangle DFG$ is therefore equilateral and $ \angle DGA = 120^\circ = 180^\circ - \angle DBA$ $ \Longrightarrow$ $ B$ is on circumcircle $ (P)$ of the isosceles $ \triangle DGA.$ Let $ CD$ cut $ (P)$ again at $ K.$ $ \triangle DAK$ is equilateral with $ \angle DKA = \angle ADK = 60^\circ$ $ \Longrightarrow$ $ \frac{KC}{DC} = 2.$ Let $ (Q)$ be circumcircle with diameter $ DF$ of the right $ \triangle DFM.$ Since $ \frac{KC}{DC} = \frac{AC}{MC} = \frac{GC}{FC} = 2,$ the circles $ (P), (Q)$ are similar with center $ C$ and coefficient 2. Since $ B \in (P)$ and $ \frac{BC}{EC} = 2,$ it follows that $ E \in (Q)$ with diameter $ DF$ and $ \angle DEF = 90^\circ.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Zhero
2043 posts
#5 • 2 Y
Y by centslordm, Adventure10
Take $G$ on $AC$ so that $2AG = GC$. It is easy to see that $\angle GDA = \angle GAD = 30^{\circ}$. Let $D'$ be the reflection of $C$ across $D$. $D'DA = 180^{\circ} - \angle ADC = 60^{\circ}$, and $DA = DD'$, so $\triangle AD'D$ is equilateral, so $AD'BD$ is cyclic. Since $\angle AGD = 30^{\circ}$, $\angle GDD' = \angle GAD' = 90^{\circ}$, so $AGDBD'$ is cyclic. $\angle GD'D = \angle GAD = 30^{\circ}$ and $\angle D'AE = 60^{\circ}$, so $AD \perp D'G$, so $D'G$ must be a diameter of $D'AGDB$, so $\angle GBD' = 90^{\circ}$. Since $CG = 2CF$, a homothety centered at $C$ with factor 1/2 gives $FE \perp DE$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Particle
179 posts
#6 • 4 Y
Y by Durjoy1729, centslordm, Adventure10, Mango247
Solution:
Assume that $CD$ meets $AB$ at $W$. Let $F'$ be the mid-point of $AF$ and $M$ is that of $AC$. Now apply cosine rules to show $DFF'$ is an equilateral triangle. So $\angle DBA=\angle DF'F=60^{\circ}$ and $ABDF'$ is cyclic.
Since $\angle A+\angle B+\angle C=180^{\circ}$, we must have $\angle DAB+\angle DBC+\angle DCB=60^{\circ}$
In other words $\angle WDB+\angle DAB=60^{\circ}$
Hence \[\angle EFD=\angle EFA-60^{\circ}=\angle BF'A-60^{\circ} =\angle BDA-60^{\circ}=\angle BDW=60^{\circ}-\angle DAB\]At the same time $\angle EMD=\angle DXA\; (X=MD\cap AB)\; =90^{\circ}-\angle A=60^{\circ}-\angle DAB$
Therefore $\angle EFD=\angle EMD$ and $MDEF$ is cyclic. So $\angle DEF=180^{\circ}-\angle DMF=90^{\circ}$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
v_Enhance
6877 posts
#7 • 9 Y
Y by osmannal4, anser, MathbugAOPS, srijonrick, HamstPan38825, centslordm, Mathlover_1, Adventure10, Mango247
Without loss of generality, $AC = 3$. Let $O$ be the circumcenter of $(BAD)$ and let $K = OC \cap DF$. We have $OD \parallel FC$ since $\angle ODA = 30^{\circ} = \angle DAF$, and we can compute $OD = FC = 1$. So $ODCF$ is a parallelogram and $K$ is the midpoint of $OC$. Then we can compute that $KD = KF = KE = \tfrac{1}{2}$, implying $DE \perp EF$.
This post has been edited 1 time. Last edited by v_Enhance, Jan 25, 2016, 3:51 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vsathiam
201 posts
#8 • 6 Y
Y by osmannal4, GeometryIsMyWeakness, anser, MathbugAOPS, centslordm, Adventure10
Just to clarify, one gets the value of KE by noting that BOC and EKC are similar with a scale factor of two. (that comes from the parallelogram). So KE= $\frac{1}{2} $ and the conclusion follows.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AllenWang314
661 posts
#9 • 2 Y
Y by centslordm, Adventure10
I was doing this problem in EGMO, I came up with a solution that I can't tell if it's bogus or not.

Using the first hint from EGMO, through simple computation we see that $DF=FC$ and $\angle DCF=\angle FDC=30^{\circ}$. Let $DC$ intersect the circumcircle $(BDA)$ again at $G$. Also, let the circle with diameter $DF$ intersect $AC$ again at $H$. Let $F'$ be the reflection of $F$ over $HD$. We see that $F'$ lies on $(BDAG)$ and $GAF'$ is a 30, 60, 90 triangle with right angle at $A$. Thus there is a homothety centered at $C$ that takes $\triangle DHF\rightarrow\triangle GAF'$.

This homothety also maps the circumcircles of these two triangles in a 1 to 2 ratio (we can easily compute the ratio of the circumradii with LOS). Since $H$ is the midpoint of $AC$, then the intersection of $(DHF)$ with $BC$ closer to $B$ is the midpoint of $BC$. So point $E$ lies on $(DHF)$, and the perpendicular condition is prove.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
absurdist
25 posts
#10 • 4 Y
Y by AllenWang314, centslordm, Adventure10, Mango247
Barycentric Coordinates :D

Here, $(x,y,z)$ is a homogenized coordinate while $(x:y:z)$ is not.

Let $Q$ be the point on $DC$ for which $\triangle QDA$ is an equilateral triangle. We will use $\triangle QDA$ as our reference triangle instead of $\triangle ABC$, with $Q = (1,0,0)$, $D = (0,1,0)$ and $A = (0,0,1)$. Then it is easy to see $C = (-1,2,0)$, since $D$ is the midpoint of $QC$.

The condition $\angle B = 60^\circ$ implies that $B$ lies on the circumcircle $(QDA)$. Thus, if $B=(u,v,w)$, then $vw+uw+uv=0$. Now, we can calculate the points $E$ and $F$, giving
\begin{align*}
E &= \tfrac{1}{2}B + \tfrac12 C =  \left(\tfrac{u-1}{2},\tfrac{v+2}{2},\tfrac{w}{2}\right),\\
F &= \tfrac{1}{3}A + \tfrac23 C = \left(-\tfrac{2}{3},\tfrac43,\tfrac13\right).
\end{align*}Now, we can calculate the displacement vectors $\overrightarrow{DE}$ and $\overrightarrow{FE}$. We get
\begin{align*}
\overrightarrow{DE} &= E - D = \left(\tfrac{3u+1}{6},\tfrac{3v-2}{6},\tfrac{3w-2}{6}\right)\\ &= (3u+1:3v-2:3w-2), \\
\overrightarrow{FE} &= E - F = \left(\tfrac{u-1}{2},\tfrac{v}{2},\tfrac{w}{2}\right)\\ &= (u-1:v:w).
\end{align*}Finally, it remains to show that the vectors are perpendicular, which happens iff
\[
\big((3v-2)w+(3w-2)v\big)+\big((3u+1)w+(3w-2)(u-1)\big)+\big((3u+1)v+(3v-2)(u-1)\big)=0
\]by the perpendicularity criterion. But the LHS is equal to
\[ 6(vw+uw+uv)-4(u+v+w)+4 = 0-4+4=0, \]and we are done.
Attachments:
This post has been edited 1 time. Last edited by absurdist, Jun 20, 2017, 10:05 PM
Reason: fixed diagram
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Vrangr
1600 posts
#11 • 3 Y
Y by centslordm, Adventure10, Mango247
Note that $D$ lies on the perpendicular bisector of $AC$.
Let $M$ be the midpoint of $AC$, $DM\perp AC$.
It suffices to prove that $\odot(DMF)$ intersects $BC$ at $E$.
Consider the homothety at $C$ with scale $2$. $M \to A$, $E \to B$, $D\to D'$, $F \to F'$ and $\odot(DMF)\to\odot(AF'D')$. It now suffices to prove that $D$ lies on on $\odot(AF'D')$.
Note that $AF' : F'C = 1 : 2$ and $CD = CM \sec 30^{\circ} = \tfrac{2}{\sqrt3} CM = \tfrac1{\sqrt3} AC$.
We claim that $D$ lies on $\odot(AF'D')$. Since
\[CD\cdot CD' = 2CD^2 = \tfrac{2}{3} AC^2 = AC\cdot AF'\]Now, note that $AD'D$ is an equilateral triangle, since, $\angle D'AD = \angle D'AF - \angle DAF' = 60^{\circ}$ and $\angle ADD' = \angle DAC + \angle DCA = 60^{\circ}$.
Now, $B$ lies on $\odot(AF'D')$ since $\angle ABD = 60^{\circ} = \angle DD'A$.

Sidenote: If we let $CD \cap AB = K$. Then $\odot(BDK)$ and $\odot(DEF)$ are tangent to each other and $AD$ is their common tangent.
This post has been edited 2 times. Last edited by Vrangr, Jul 28, 2018, 5:49 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sunken rock
4394 posts
#12 • 3 Y
Y by centslordm, Adventure10, Mango247
If $K$ was the circumcenter of $\triangle ABD, AK, DK$ are tangent to the $\odot(ADC)$, thus $CK$ is symmedian of $\triangle ADC$ and subsequently median of $\triangle CFD$, thus, if $L$ was the midpoint of $DF$, then $LE=\frac{BK}2$ (actually $CFKD$ is a parallelogram, thus $KL=CL$). But from $AD=DC$ and $\triangle AKD\cong\triangle CFD$ we get $BK=KD=DF$, hence $LE=DL=LF$ and $\triangle DEF$ is $E-$right-angled.

Best regards,
sunken rock
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anser
572 posts
#13 • 3 Y
Y by centslordm, Adventure10, Mango247
Let $M$ be the midpoint of $AC$ and let $F'$ be the point on $\overline{AC}$ such that $2AF'=F'C$. Since $\angle{ADM}=\angle{ABD}=60^{\circ}$, $MD$ is tangent to $(ABD)$. Since $MD^2=MF'\cdot MA=\frac{AC^2}{12}$, quadrilateral $ABDF'$ is cyclic and $\angle{ABF'}=\angle{ADF'}=30^{\circ}$. Taking a homothety at $C$ by scale factor $\frac{1}{2}$ , we find that $\angle{ABF'}=\angle{MEF}=\angle{MDF}=30^{\circ}$. Thus, quadrilateral $MDEF$ is cyclic and $\angle{DEF}=180^{\circ}-\angle{DMF}=90^{\circ}$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AlastorMoody
2125 posts
#14 • 3 Y
Y by centslordm, Adventure10, Mango247
Let $M_B$ be the midpoint of $AC$ and let $X$ be the foot of perpendicular from $F$ to $DC$, then,
$$\frac{M_BF}{FC}=\frac{M_BC-FC}{FC}=\frac{\tfrac{1}{2}AC-\tfrac{1}{3}AC}{\tfrac{1}{3}AC}=\frac{1}{2}=\sin 30^{\circ}=\frac{M_BD}{DC}$$Hence, $\angle M_BDF=\angle FDC=\angle FCD=30^{\circ}$, Let $F'$ be the reflection of $F$ in $M_B$, then, $DF'$ is the angle bisector of $\angle ADM_B$, hence now, $AF'$ $=$ $FF'$ $=$ $FC$ $=$ $FD$ $=$ $F'D$ $\implies$ $\angle ABD$ $=$ $\angle DF'F$ $=$ $60^{\circ}$, hence, $ABDF'$ is cyclic $\implies$ $\angle ABF'$ $=$ $\angle F'BD$ $=$ $30^{\circ}$, since, $DF$ $=$ $FC$ $\implies$ $DX$ $=$ $XC$, hence, $\implies$ $DB||EX$ and $BF' ||EF$, now, $\angle FEX$ $=$ $\angle FEC$ $-$ $\angle XEC$ $=$ $\angle F'BC$ $-$ $\angle DBC$ $=$ $\angle F'BD$ $=$ $30^{\circ}$, therefore, $\angle FDC$ $=$ $\angle FEX$ $=$ $30^{\circ}$ $\implies$ $FDEX$ is cyclic, $\implies$ $\angle FXD$ $=$ $\angle FED$ $=$ $90^{\circ}$
This post has been edited 3 times. Last edited by AlastorMoody, Mar 9, 2019, 8:34 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AopsUser101
1750 posts
#15 • 2 Y
Y by v4913, centslordm
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(30cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -2.3, xmax = 20, ymin = -7, ymax = 3;  /* image dimensions */
pen dbwrru = rgb(0.8588235294117647,0.3803921568627451,0.0784313725490196); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); 
 /* draw figures */
draw((9.48,2.12)--(19.12,-6.12), linewidth(1) + dbwrru); 
draw((19.12,-6.12)--(2.64,-6.28), linewidth(1) + wrwrwr); 
draw((2.64,-6.28)--(9.48,2.12), linewidth(1) + wrwrwr); 
draw((xmin, -0.5644774419752964*xmin + 4.672808690567666)--(xmax, -0.5644774419752964*xmax + 4.672808690567666), linewidth(0.00001) + white + dotted); /* line */
draw((2.64,-6.28)--(10.833811978464832,-1.4426337818774861), linewidth(1) + wrwrwr); 
draw((10.833811978464832,-1.4426337818774861)--(9.48,2.12), linewidth(1) + wrwrwr); 
draw((10.833811978464832,-1.4426337818774861)--(19.12,-6.12), linewidth(1) + wrwrwr); 
draw((xmin, -1.693858105629436*xmin + 7.55004592578608)--(xmax, -1.693858105629436*xmax + 7.55004592578608), linewidth(0.00001) + white); /* line */
draw((xmin, 0.3800031272794423*xmin-3.5209729303303585)--(xmax, 0.3800031272794423*xmax-3.5209729303303585), linewidth(0.00001) + white); /* line */
draw((5.3383604845092725,-1.492379251671836)--(2.64,-6.28), linewidth(1) + wrwrwr); 
draw((5.3383604845092725,-1.492379251671836)--(10.833811978464832,-1.4426337818774861), linewidth(1) + wrwrwr); 
draw((5.3383604845092725,-1.492379251671836)--(9.48,2.12), linewidth(1) + dbwrru); 
draw((xmin, -0.5644774419752964*xmin + 1.5210048189659622)--(xmax, -0.5644774419752964*xmax + 1.5210048189659622), linewidth(1) + white); /* line */
draw((5.3383604845092725,-1.492379251671836)--(13.630832927947854,-6.173292884194681), linewidth(1) + wrwrwr); 
draw((5.3383604845092725,-1.492379251671836)--(19.12,-6.12), linewidth(1) + dbwrru); 
draw((10.833811978464832,-1.4426337818774861)--(13.630832927947854,-6.173292884194681), linewidth(1) + dtsfsf); 
draw((10.833811978464832,-1.4426337818774861)--(14.3,-2), linewidth(1) + dtsfsf); 
draw((14.3,-2)--(13.630832927947854,-6.173292884194681), linewidth(1) + dtsfsf); 
 /* dots and labels */
dot((9.48,2.12),dotstyle); 
label("B", (9.56,2.32), NE * labelscalefactor); 
dot((2.64,-6.28),dotstyle); 
label("A", (2.72,-6.08), NE * labelscalefactor); 
dot((19.12,-6.12),dotstyle); 
label("$C$", (19.2,-5.92), NE * labelscalefactor); 
dot((10.833811978464832,-1.4426337818774861),linewidth(4pt) + dotstyle); 
label("$D$", (10.92,-1.28), NE * labelscalefactor); 
dot((5.3383604845092725,-1.492379251671836),linewidth(4pt) + dotstyle); 
label("$O$", (5.42,-1.34), NE * labelscalefactor); 
dot((13.630832927947854,-6.173292884194681),linewidth(4pt) + dotstyle); 
label("$F$", (13.72,-6.02), NE * labelscalefactor); 
dot((14.3,-2),linewidth(4pt) + dotstyle); 
label("$E$", (14.38,-1.84), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]

I totally did not read all of Evan’s hints [I read all of them - every single one]

Let $\angle OBD = \angle ODB = x$ and $\angle OAD = \angle ODA = y$. We know that:
$$\angle OBD + \angle BDA + \angle DAO + \angle AOB = x + x + y + y  + \angle AOB = 360 \Longleftrightarrow \angle AOB = 360 -2x - 2y$$This means that $\angle OBA = \angle OAB = x + y - 90$. Note that:
$$\angle OBA + \angle ABD = x + y - 90 + 60 = x + y - 30 = x$$Hence, $y = 30$. Since $\angle ODA = 30 $ and $\angle ADC = 120$ with $\angle DCA = 30$, $OD || FC$. Now, assume WLOG $AC =6$ (if this is not the case, we can always scale the diagram). Then, $AF = 4, FC = 2, AD = 2 \sqrt{3}$. Given that $\angle ODA = \angle OAD = 30$, we can deduce that $OB = OD = OA = 2$. Hence, $OD = FC$, so $ODCF$ is a parallelogram. By Stewart’s theorem:
$$DF^2 (CA) + CF \cdot FA \cdot CA = DC^2 \cdot FA + DA^2 \cdot CF \Longleftrightarrow DF = 2$$Note that the intersection of $OC$ and $DF$ is the midpoint of $DF$ ($ODCF$ is a parallelogram). The homothety that takes $E$ to $B$ (from $C$) also takes the midpoint of $DF$ to $O$, so the distance from the midpoint of $DF$ to $E$ is $\frac{BO}{2} = 1$. It follows that $DEF$ is a right triangle.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathleticguyyy
3217 posts
#16 • 1 Y
Y by centslordm
Here's a purely synthetic solution.

Let the reflection of $C$ over $D$ be $C'$, the midpoint of $AC$ be $M$ and the point at which the circumcircle of $ABD$ intersects $AC$ be $G$.

It's immediate that $\angle DGA=180^\circ-\angle DBA=120^\circ$; since $G$ lies on $AC$, $\angle GAD=30^\circ=\angle GDA$ and we have that $AG=\frac{AD}{\sqrt{3}}=\frac{AC}{3}$, so $GC=\frac{2AC}{3}$.

Since $\angle AC'D=\angle DAC+\angle DCA=60^\circ=\angle ABD$, $C'$ lies on the circumcircle of $ABD$. Now, consider the homothety sending the circumcircle of $ABG$ to the circumcircle of $MEF$ centered at $C$. It has scale factor $\frac{1}{2}$, so it maps $C'$ to $D$, and hence $DEMF$ is cyclic. This gives $\angle DEF=\angle DMF=90^\circ$ as desired.
This post has been edited 1 time. Last edited by mathleticguyyy, Apr 29, 2021, 12:57 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Wizard0001
336 posts
#17
Y by
posted here
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
HamstPan38825
8864 posts
#18 • 1 Y
Y by centslordm
First I misread thinking $F$ was not on segment $BC$. Then I misread that $D$ is outside $\triangle ABC$. What am I doing?

[asy]
size(250);
pair A = origin, C = (3, 0), D = (3/2, sqrt(3)/2);
pair X = extension(C, D, (0, 0), (0, 50));
pair B = circumcenter(A, D, X)+abs(circumcenter(A, D, X)-A)*dir(87);
draw(A--C--D--B--cycle);
pair EE = (B+C)/2;
pair F = C*2/3;
draw(B--C);
draw(D--EE--F--cycle, dashed);
pair M = (D+F)/2;
draw(EE--M);
draw(EE--circumcenter(A, B, D)--F);
draw(circumcenter(A, B, D)--B);
draw(circumcenter(A, B, D)--C, dashed);
draw(circumcenter(A, B, D)--D--A);
dot("$O$", circumcenter(A, B, D), SW);
dot("$A$", A, SW);
dot("$C$", C, SE);
dot("$B$", B, N);
dot("$F$", F, S);
dot("$M$", M, SW);
dot("$E$", EE, NE);
dot(D);
label("$D$", D+(0, 0.05), N);
[/asy]

Let $M$ be the midpoint of $DF$. It suffices to show that $EM = \frac 12 DF$.

WLOG let $AC=3$. From the Law of Cosines, we obtain $$DF = \sqrt{1+3-\sqrt 3 \cdot \frac{\sqrt 3}2 \cdot 2} = 1,$$so it suffices to show that $EM = \frac 12$.

First, verify that the circumradius of $\triangle ABD$ is 1 by the Extended Law of Sines, so compute $OB=1$. Furthermore, since $\angle ODA = 30^\circ = \angle DAC$ and $OD=CF=1$, $ODCF$ is a parallelogram. It follows that there is a homothety at $M$ taking $FC$ to $GD$ with ratio $-1$, and hence $M$ is the midpoint of $CG$.

Therefore, there is a homothety at $C$ with ratio $\frac 12$ taking $BG$ to $ME$. It follows that $ME = \frac 12$ for all choices of $B$, and $DE \perp EF$ as desired. $\square$
This post has been edited 9 times. Last edited by HamstPan38825, Jun 11, 2021, 4:11 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bever209
1522 posts
#19 • 1 Y
Y by centslordm
Let $F'$ be the reflection of $F$ over $M$ and $C'$ be the reflection of $C$ over $D$ and $M$ be the midpoint of $AC$. It is trivial that $\angle DMA=90$. Now if $DM=x$ then $AM=x\sqrt{3}$ and $F'M=\frac{x\sqrt{3}}{2}$ and since $DM \perp AM$, we have $DF'M$ is a 30-60-90 triangle.

This quickly gives that $AF'DB$ is cyclic and that $F'A=F'D$. In addition we get $\angle F'DC=90$. This means $\angle F'CD=\angle F'C'D=30$ but since $\angle F'DA=30$, we have that $C'$ lies on $(ADB)$.

Finally, a homothety of ratio $0.5$ from $C$ sends $A,F',B,C'$ to $M,F,E,D$ respectively, so they are all cyclic. And thus \[\angle DEF=180-\angle DMF=90\]so we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jj_ca888
2726 posts
#20 • 1 Y
Y by centslordm
Consider point $X$ outside triangle $DAC$ such that $XA = XD$ and $\angle AXD = 120^{\circ}$. Consider the circle centered at $X$ with radius $PA$, which we let equal 1. Denote this circle as $\omega$. We then consider the configuration on the complex plane, letting $X$ be $0$ (or the center/origin), making $\omega$ the unit circle. Since $\angle DBA = 60^{\circ}$, we know that $B$ lies on $\omega$.

Some raw computation yields that $d = 1$, $f = \frac32 + \frac{\sqrt{3}}{2}i$, $c = \frac52 + \frac{\sqrt{3}}{2}i$, and $e = \frac{b+c}{2}$. We will keep these as reference, as these will be useful later on.

In order to show that $DE \perp EF$, it suffices to show that $V = \frac{d-e}{e-f} + \overline{\left(\frac{d-e}{e-f}\right)} = 0$. We substitute the values above that were kept as reference to obtain that$$V = \frac{2-b-c}{b+c-2f} + \frac{2-\overline{b} - \overline{c}}{\overline{b} + \overline{c} - 2\overline{f}}$$We know that $2-c = e^{\frac{2\pi i}{3}}$, $2 - \overline{c} = e^{\frac{4\pi i}{3}}$, $c-2f = e^{\frac{2\pi i}{3}}$, and $\overline{c} - 2\overline{f} = e^{\frac{4\pi i}{3}}$ from substitution. Therefore, we get the following:$$V = \frac{e^{\frac{2\pi i}{3}} - b}{e^{\frac{2\pi i}{3}} + b} + \frac{e^{\frac{4\pi i}{3}} - \overline{b}}{e^{\frac{4\pi i}{3}} + \overline{b}}$$Combining denominators and simplifying, the numerator becomes$$(e^{\frac{2\pi i}{3}} - b)(e^{\frac{4\pi i}{3}} + \overline{b}) + (e^{\frac{2\pi i}{3}} + b)(e^{\frac{4\pi i}{3}} - \overline{b})$$It turns out that this expression is nice AF and everything CANCELS OUT, so therefore $V = 0$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
khina
994 posts
#21 • 2 Y
Y by centslordm, Mango247
A fairly motivated synthetic solution:

solution

motivation
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
zbghj2
89 posts
#22
Y by
$G$ is the midpoint of $AF$. $H$ is on $BG$ or the extension of $BG$, and $CH \perp BH$.
$\angle ABD = 60 ^{\circ} = \angle DGC $ $ \Longrightarrow$ $AGDB$ are concyclic $ \Longrightarrow$ $\angle HBD= \angle DAG =30 ^{\circ}$
$\angle GDC = 90 ^{\circ} = \angle GHC $ $ \Longrightarrow$ $GHCD$ are concyclic $ \Longrightarrow$ $\angle DHC= \angle DGC =60 ^{\circ}$

The extension of $BD$ crosses $HC$ at $M$.
$ \Longrightarrow$ $BD=HD=DM$
$ \Longrightarrow$ $DE//HC$
$ \Longrightarrow$ $DE \perp BH$ $ \Longrightarrow$ $DE \perp EF$
This post has been edited 3 times. Last edited by zbghj2, Jun 30, 2021, 9:11 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mogmog8
1080 posts
#23 • 1 Y
Y by centslordm
Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DottedCaculator
7353 posts
#24 • 1 Y
Y by centslordm
Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
huashiliao2020
1292 posts
#25
Y by
Very nice problem!

We'll show that E lies on the circle with diameter DF=$\omega$. Note that the midpoint of AC=M lies on $\omega$ since ADC is isosceles, $N=CD\cap\omega$ is the midpoint of CD since CFD is isosceles (proof: DMC is 30-60-90, MF/FC=(1/6)/(1/3)=1/2=MD/DC implies DF bisects angle MDC which is 60 deg), and F is the midpoint of $AC\cap(ABD)=P$ with C, since APD=120 means DPF=60, whence FPD is equilateral implies FP=FD=FC; in particular, (ADP) goes to (MNF), with A going to E by homothety at C; in particular, since B lies on (ADP), E lies on (DNFM), as desired. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
shendrew7
796 posts
#26
Y by
Let $X = CD \cap (ABD)$ and $Y = CA \cap (ABD)$. Then
  • $\triangle AXD$ is equilateral.
  • $\triangle AYD$ is a 30-30-120 triangle, so $\angle DAY = 30$ and $F$ is the midpoint of $YC$.

Thus there exists a homothety of scale factor 2 mapping $\triangle DEF \rightarrow \triangle XBY$, so
\[\angle DEF = \angle XBY = 180 - \angle YAX = 180-60-30 = 90. \quad \blacksquare\]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
RedFireTruck
4223 posts
#27
Y by
Let $D=(2, 0)$, $A=(-1, -\sqrt3)$, $C=(5, -\sqrt3)$, $F=(3, -\sqrt3)$, and $B=(2a, 2b)$ where $a^2+b^2=1$. We see that $E=(a+\frac52, b-\frac{\sqrt3}{2})$ so we must have that $\frac{(a-\frac12)+(b+\frac{\sqrt3}2)i}{(a+\frac12)+(b-\frac{\sqrt3}2)i}\in i\mathbb{R}$. Since $a^2+b^2=1$, $\text{Re}(\frac{(a-\frac12)+(b+\frac{\sqrt3}2)i}{(a+\frac12)+(b-\frac{\sqrt3}2)i})=\frac{(a^2-\frac14)+(b^2-\frac34)}{(a+\frac12)^2+(b-\frac{\sqrt3}2)^2}=0$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cj13609517288
1916 posts
#28
Y by
lol what

Note that $\triangle ADC\sim\triangle DFC$. Therefore, the circle with diameter $DF$ passes through the midpoints of $AC$ and $DC$. Thus, taking a homothety with scale factor $2$ from $C$ will take this circle to the circle with $A$, $D$, and the reflection of $C$ over $D$. Therefore, it suffices to show that $B$ is on this circle as well. But this is just because $\angle ABD=60^{\circ}$. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
joshualiu315
2534 posts
#29
Y by
WLOG suppose that $AC=6$. Moreover, let $O$ be the circumcenter of $(ABD)$, and let $(ABD)$ intersect $\overline{AC}$ again at point $G \neq A$. It is clear that $\angle AOD = 2 \angle ABD = 120^\circ$, which implies that $OA = OD = OB = 2$.

Clearly, $ODCF$ is a parallelogram, so denoting the midpoint of $\overline{DF}$ as $M$, we find that $M$ is also the midpoint of $\overline{OC}$. Thus, $\triangle CEM \sim \triangle CBO$, with scale factor $\tfrac{1}{2}$:

\[ME = \frac{1}{2} OB = 1 = MD = MF, \]
which implies $\triangle DEF$ is a right triangle. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cj13609517288
1916 posts
#30
Y by
???

A simple length chase gives that $\angle FDC=30^{\circ}$. So $(FD)$ also passes through the midpoints of $AC$ and $DC$. So a homothety at $C$ with scale factor $2$ finishes. $\blacksquare$

Remark. This solution had to work because $B$ was literally only used once.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tsikaloudakis
981 posts
#32
Y by
see the figure:
Attachments:
This post has been edited 3 times. Last edited by Tsikaloudakis, Apr 11, 2025, 11:41 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
zuat.e
59 posts
#33
Y by
Let $B'$ be the point on the line parallel to $BD$ through $C$ and which lies on the circle centered at $D$ with radius $DA=DC$ and so we will consider $\triangle AB'C$ as our reference triangle and $D$ will be its center. Furthermore, let $X=DE\cap B'C$.

Claim: Quadrilateral $BDCX$ is a parallelogram and quadrilateral $BDXB'$ is an isosceles trapezoid
Proof: Consider the homothety centered at $E$ with radius $k=-1$, which sends $C$ to $B$ and as $BD\parallel B'C$, it sends $X$ to $D$, hence $DE=EX$ and $BDCX$ is a parallelogram.
It is now easy to note that $\measuredangle XBD=\measuredangle DCX=\measuredangle DCB'=\measuredangle CB'D$, hence $BDXB'$ is an isosceles trapezoid.

Let $P$ be the reflection of $C$ across $F$, therefore $AP=PF=FC$.
Claim: $CXDP$ is a cyclic quadrilateral centered at $F$
Proof: Consider the $(PDC)$ and we claim $AD$ is tangent to it.
Indeed, note that $AD^2=(\frac{AC}{2\cos{30º}})^2=\frac{AC^2}{3}=AP\cdot AC$, consequently $\measuredangle CDF\overset{\mathrm{symmetry}}{=}\measuredangle PDA=\measuredangle FCD=30º$, hence $F$ is the center of $(PDC)$.
It suffices to show that $PDXC$ is cyclic, which follows from $\measuredangle DFC=\measuredangle DCF+\measuredangle FDC=120º=\measuredangle B'BD=\measuredangle CXD$, proving our claim.

It now follows that $FD=FX$, which combined with $DE=EX$ yields that $EF$ is the side bisector of $DX$, hence $\measuredangle FED=90º$, as desired.


Remark: As $D$ is almost the center of $ABC$ (we just have to get rid of the angle $\measuredangle CBD$), which is the motivation to add $B'$. Besides that, the condition of $\measuredangle CB'A=60º$ is only used when proving $DF=FX$, that is the parallelogram and isosceles trapezoid are also true when $\measuredangle CB'A$ is arbitrary. Moreover, if $F$ is the point satisfying $\measuredangle FED=90º$, $CXDP$ will always be a cyclic quadrilateral with center $F$, however $F$ won't satisfy $AF=2FC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
zuat.e
59 posts
#34
Y by
We can also easily bash the problem using complex numbers.
Use the same setup as before and let $c=1$, therefore $a=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$, while $b'$ is free.
We can compute $b=\frac{a+b'}{1-a}$, $e=\frac{b'+1}{2(1-a)}$ and $f=\frac{a+2}{3}$, hence $T=\frac{d-e}{f-e}=\frac{3(b'+1)}{2a^2+2a+3b'-1}$ and $\bar T=\frac{3a^2(b+1)}{2b'+2ab'+3a^2-a^2b'}$.
As $a^2+a+1=0$, we have $\frac{2b'+2ab'+3a^2-a^2b'}{a^2}=-(2a^2+2a+3b'-1)$, hence $T=-\bar T$, as desired
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AshAuktober
1007 posts
#35
Y by
Same as @khina above, although more bashy.
Z K Y
N Quick Reply
G
H
=
a