Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
circumcenter of ARS lies on AD
Melid   1
N 39 minutes ago by Acrylic3491
Source: own
In triangle $ABC$, let $D$ be a point on arc $BC$ of circle $ABC$ which doesn't contain $A$. $AD$ and $BC$ intersect at $E$. Let $P$ and $Q$ be the reflection of $E$ about to $AB$ and $AC$, respectively. $PD$ intersects $AB$ at $R$, and $QD$ intersects $AC$ at $S$. Prove that circumcenter of triangle $ARS$ lies on $AD$.
1 reply
Melid
5 hours ago
Acrylic3491
39 minutes ago
Overly wordy problems
ZMB038   16
N Today at 6:47 AM by Yiyj
Hey everyone, here we can post questions with way to many extraneous words, that are actually easy.
Try to solve the one above yours.
I'll start:
Click to reveal hidden text
16 replies
ZMB038
May 28, 2025
Yiyj
Today at 6:47 AM
No one here has solved the revised version yet
PikaVee   7
N Today at 6:19 AM by PikaVee
(Thanks Random Stranger for the idea and I will be making it so it is extremely specific to your solution.)
We are playing Pokemon Scarlet and Violet and you are fighting a friend. You and your friend don't have any items at all and the pokemon does not have any held items. Your friend challenges you to a battle because he just said nah I'd win.

You two start the battle using only one Pokemon each which neither of you knows the type of the other. Luckily he had used a level 28 Squirtle and you had used a level 25 Pikachu. Surprisingly both of the Pokemon each have one HP. Your Pikachu has a move set of one single move of Thunder with 10/10 PP and has 1 HP because you forgot to go to the Pokemon center. Your Pikachu also has a bad IV stat in speed with 1/15 and the 252 EV speed stat of the Squirtle combined with a perfect IV stat in speed makes it so it guarantees to always out speed your move. To account for that he made his Squirtle have 1 HP on purpose for absolutely no reason.

After he saw what kind of moves you have and since that person was so cocky and confident that they decided to gamble all their moves with each having an equal chance of being used. Their Squirtle has a move set of Protect 10 PP which has 100% chance of being used and has has the success probability multiplied by 1/3 every time it is being used (Meaning the second time it is being used has a 33% chance of succeeding and a third time it will be 11%. This also ignores the rules of how the move is regularly used by making the 4th move 1/27 instead of it being a guaranteed fail and so on.), Tackle which has a 100% chance to hit having 10/35 PP , Water Gun which has a 100% chance of hitting with 10/25 and Rain Dance with 5/5 PP and 100% chance of being used. If the amount of PP reaches 0 it will be unavailable for the rest of the fight meaning that the probability for each other move to be used goes from 25% all the way to 33%.

For everyone who wants to solve the easy part. If the probability that Squirtle will survive turn 1 when simplified is a/b then what is a+b?

Alright so for Squirtle to survive turn one then we try to find out how Squirte will faint at turn one. First of all Pikachu needs to hit Thunder bolt at a 70% chance then get a 25% chance that the Squirtle will use Rain Dance so that the Squirtle will not faint the Pikachu because it didn't attack. Another possible option is for it to choose Water Gun and miss so it would be a 70% * 25% * 5% chance for Pikachu to faint Squirtle. 70% = \frac{7}{10}, 25% = \frac{1}{4}, and 5% = \frac{1}{20} So the complement of what we are trying to find is $\frac{7}{10}*\frac{1}{4}+\frac{7}{10}*\frac{1}{4}*\frac{1}{20}=\frac{7}{10*4}+\frac{7}{10*4*20}=\frac{7}{40}+\frac{7}{800}=\frac{140}{800}+\frac{7}{800}=\frac{147}{800}$. The complement of this would be $1-\frac{147}{800}$ or $\frac{653}{800}$. The final thing we can do is to make sure it is simplified and add the numerator and the denominator which is $653$ and $800$ so $653+800=1453$ This should be final answer. (Mathdash rating 800)

For the very hard question, What is the probability that the Squirtle will win this fight? (This is going to be a very long arithmetic series with a lot of cases. The max amount of turns this fight can have is 11 turns.)
7 replies
PikaVee
May 28, 2025
PikaVee
Today at 6:19 AM
Problem of the day
sultanine   20
N Today at 3:16 AM by EthanNg6
[center]Every day I will post 3 new problems
one easy, one medium, and one hard.
Please hide your answers so others won't be affected
:D :) :D :) :D
20 replies
sultanine
May 23, 2025
EthanNg6
Today at 3:16 AM
A Variety of Math Problems to solve
FJH07   48
N Today at 3:13 AM by EthanNg6
Hi, so people can post different math problems that they think are hard, and I will post some (I think middle school math level) problems so that the community can help solve them. :)
48 replies
FJH07
May 22, 2025
EthanNg6
Today at 3:13 AM
Worst Sillies of All Time
pingpongmerrily   61
N Today at 3:01 AM by shaayonsamanta
Share the worst sillies you have ever made!

Mine was probably on the 2024 MathCounts State Target Round Problem 8, where I wrote my answer as a fraction instead of a percent, which cost me a trip to Nationals that year.
61 replies
pingpongmerrily
May 30, 2025
shaayonsamanta
Today at 3:01 AM
AMC 8 info
VivaanKam   5
N Today at 3:00 AM by shaayonsamanta
Hi I will be attending the AMC 8 contest in 2026. How does it work? time? number of questions? points? scoring?
5 replies
VivaanKam
Today at 1:11 AM
shaayonsamanta
Today at 3:00 AM
MathDash help
Spacepandamath13   11
N Today at 1:27 AM by Yiyj
AkshajK ORZ by the way invited me to do MathDash a few months ago and I did try it one day but haven't done it much after (Sorry). Now, I'm getting back into it and finding the format kind of weird. When selecting certain problem type sometimes it lets me pick immediately, other times not. Any fixes?
11 replies
Spacepandamath13
May 29, 2025
Yiyj
Today at 1:27 AM
Challenge: Make every number to 100 using 4 fours
CJB19   274
N Today at 12:30 AM by AllenHou
I've seen this attempted a lot but I want to see if the AoPS community can actually do it. Using ONLY 4 fours and math operations, make as many numbers as you can. Try to go in order. I'll start:
$$(4-4)*4*4=0$$$$4-4+4/4=1$$$$4/4+4/4=2$$$$(4+4+4)/4=3$$$$4+(4-4)*4=4$$$$4+4^{4-4}=5$$$$4!/4+4-4=6$$$$4+4-4/4=7$$$$4+4+4-4=8$$
274 replies
CJB19
May 15, 2025
AllenHou
Today at 12:30 AM
DHR Amc8?
imsuper   139
N Today at 12:23 AM by Moon_settler
What do yall think the DHR this year will be? Will 22 be enough?
139 replies
imsuper
Jan 30, 2025
Moon_settler
Today at 12:23 AM
Combo Bash
DhruvJha   5
N Yesterday at 11:01 PM by EthanNg6
Devin and Cowen are playing a game where they take turns flipping a biased coin. The coin lands on heads with probability 2/3 and tails with probability 1/3. Devin goes first. On each turn, the current player flips the coin repeatedly until the coin lands tails. For each heads flipped, the player gains 1 point and continues flipping. If the coin lands tails, their turn ends, and the other player takes their turn. The first player to reach 3 points wins the game immediately. What is the probability that Devin wins the game? Express your answer as a common fraction in lowest terms.
5 replies
DhruvJha
May 27, 2025
EthanNg6
Yesterday at 11:01 PM
The best computer problems of the year
NT_G   9
N Apr 10, 2025 by bin_sherlo
Source: https://t.me/NeuroGeometry
1. I is incenter of triangle $ABC$. $K$ is the midpoint of arc $BC$ not containing $A$. $L$ is the midpoint of arc $(BAC)$ $M$ is the midpoint of $IK$ and $N$ is the midpoint of $LM$.  $D$ is projection of $I$ onto $BC$. $S$ is the second intersection of $KD$ and $(ABC)$
Prove that $(ISD)$ is tangent to $(AMN)$.

2. Circle $w$ with center $I$ is incircle of triangle $ABC$. $D$ is projection of $I$ onto $BC$ Points $E, F$ on segments $BI$, $CI$ are following condition: $IE = IF$. $M$ is the midpoint of $EF$. $P$ is the second intersection of $(IMD)$ and $w$. $Q$ is the second intersection of $AP$ and $(IMD)$.
Prove, that $I,E,F,Q$ are concyclic.

I am grateful to Savva Chuev for making the diagrams.
9 replies
NT_G
Dec 31, 2023
bin_sherlo
Apr 10, 2025
The best computer problems of the year
G H J
Source: https://t.me/NeuroGeometry
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NT_G
45 posts
#1 • 2 Y
Y by GeoKing, SBYT
1. I is incenter of triangle $ABC$. $K$ is the midpoint of arc $BC$ not containing $A$. $L$ is the midpoint of arc $(BAC)$ $M$ is the midpoint of $IK$ and $N$ is the midpoint of $LM$.  $D$ is projection of $I$ onto $BC$. $S$ is the second intersection of $KD$ and $(ABC)$
Prove that $(ISD)$ is tangent to $(AMN)$.

2. Circle $w$ with center $I$ is incircle of triangle $ABC$. $D$ is projection of $I$ onto $BC$ Points $E, F$ on segments $BI$, $CI$ are following condition: $IE = IF$. $M$ is the midpoint of $EF$. $P$ is the second intersection of $(IMD)$ and $w$. $Q$ is the second intersection of $AP$ and $(IMD)$.
Prove, that $I,E,F,Q$ are concyclic.

I am grateful to Savva Chuev for making the diagrams.
Attachments:
This post has been edited 2 times. Last edited by NT_G, Dec 31, 2023, 1:18 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NT_G
45 posts
#2 • 1 Y
Y by GeoKing
P1 has a generalisation:
Click to reveal hidden text
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SBYT
196 posts
#3 • 3 Y
Y by GeoKing, vuanhnshn, Om245
Proof of part 1

It is well know that $\angle ASI=\frac{\pi}{2}$ (Sharky Devil).Let $AS$ meets $BC$ at $E$,so $EI$ is the diameter of $\odot ISD$.
By $KI^2=KB^2=KD\cdot KS$, we can know that $KI$ is a tangent line of $\odot IDS$,so $AK\perp IE$.
Let $\odot ISD$ meets $\odot ABC$ at $S,F$,$\angle SFI=\angle SEI=\frac{\pi}{2}-\angle SAI=\frac{\pi}{2}-\angle SLK=\angle SKL=\angle SFL$,so $F,I,L$ are conlinear.
By $MF=MI=MK$, we can get $MF$ is another tangent line of $\odot IDS$.
It means that $FI$ is the polar of $M$ to $\odot ISD$ ,and $L$ lies on this line.
By $N$ is the midpoint of $ML$, we know $N$ lies on the radical axis of $\odot ISD$ and $\odot M$.
Let $NI$ meets $\odot ISD$ at $G$ again,then $NI\cdot NG=NM^2=NL^2=NA^2$.
So $A,N,M,G$ are concyclic.
Let $GP$ is a tangent line of $\odot ISD$,then $\angle IGP=\angle GIK=\angle AIN=\angle NAG$,so $IG$ tangents $\odot AMN$,too.$\Box$.
Attachments:
This post has been edited 1 time. Last edited by SBYT, Jan 2, 2024, 10:55 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Om245
165 posts
#4 • 2 Y
Y by ATGY, GeoKing
Solution of frist part

It well known that $S$ is Sharky-Devil point (as if $S$ is Sharky-Devil point then $SD$ is angle bisector so $S - D - K$)
$$\angle SIA = \angle AES = \angle AEF - \angle SEF$$
Spiral similarity at $S$ sends $\overline{EF}$ to $\overline{BC} \implies \angle SEF = \angle SCB$
so $\angle SIA = 90 - \frac{\angle A}{2} - \angle SCB$. From $S - D - K \implies \angle KSC = \angle KAC$

So $\angle SIA = 90 - \angle SDA$ from $\overline{ID} \perp \overline{BC}$ we get $\angle SIA = \angle SDI$ hence we get $\overline{AK}$ tangent to $(SID)$.

Observe $\angle LAM = 90$ and $N$ is midpoint of $LM$ we get $AN = NM$.

Let $Y =\overline{LI} \cap (ABC)$ from $\angle LYK = 90$. $Y$ also lie on circle $w$ with center $M$ with radius $MI$.
$\overline{MI}$ is tangent to $(SID)$ and $MI = MY$ so $MY$ also tangent to $(SID)$.

Let $ X = \overline{LI} \cap (SID)$ and $ P = \overline{MX} \cap (SID)$
$$(Y,I;X,P)\stackrel{I}{=}(L,M;N,\infty{\overline{LM}}) = -1 \implies \overline{IP} \parallel  \overline{LM}$$
$$\angle IXM = \angle PIM = \angle IMN \implies \angle IXM = \angle XMN$$
Now as $AN=NM$ we get $\angle IXM = \angle XMN = \angle MAN$ so $X,A,N,M$ cyclic points.

Now as tangent to $I$ and $N$ are parallel, Homothety at $X$ sends $(SID)$ to $(ANM)$ hence $X$ is tangent point of $(SID)$ and $(ANM)$


[asy]

  /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(11.574732859594226cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -4.873873445075136, xmax = 31.10085941451909, ymin = -11.661028613565328, ymax = 5.713881651780748;  /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0.); pen uququq = rgb(0.25098039215686274,0.25098039215686274,0.25098039215686274); pen qqwuqq = rgb(0.,0.39215686274509803,0.); pen ffxfqq = rgb(1.,0.4980392156862745,0.); pen xfqqff = rgb(0.4980392156862745,0.,1.); pen yqqqqq = rgb(0.5019607843137255,0.,0.); 

draw((6.368657141965151,2.5433357126321146)--(4.512464621764582,-5.062647026226595)--(18.972464621764566,-4.982647026226595)--cycle, linewidth(0.8) + zzttqq); 
 /* draw figures */
draw((6.368657141965151,2.5433357126321146)--(4.512464621764582,-5.062647026226595), linewidth(0.8) + zzttqq); 
draw((4.512464621764582,-5.062647026226595)--(18.972464621764566,-4.982647026226595), linewidth(0.8) + zzttqq); 
draw((18.972464621764566,-4.982647026226595)--(6.368657141965151,2.5433357126321146), linewidth(0.8) + zzttqq); 
draw(circle((8.300784634276322,-2.0706842173650433), 2.9709584472097386), linewidth(0.8)); 
draw(circle((11.730137875215629,-2.7945875875046027), 7.565639484614538), linewidth(0.8) + uququq); 
draw(circle((5.92712732146404,-2.788856351184553), 5.350441176933094), linewidth(0.8) + qqwuqq); 
draw((4.834979824965175,0.31920371462611136)--(11.771994161248703,-10.360111287981526), linewidth(0.8)); 
draw(circle((4.705833327883924,-3.5760752555448443), 3.8974192837266632), linewidth(0.8) + qqwuqq); 
draw((11.688281589182546,4.770936112972321)--(10.036389397762512,-6.215397752673285), linewidth(0.8)); 
draw((6.368657141965151,2.5433357126321146)--(11.771994161248703,-10.360111287981526), linewidth(0.8) + blue); 
draw(circle((7.334720888120734,0.23632574763353487), 2.5011145795902485), linewidth(0.8) + ffxfqq); 
draw((1.4299743859548495,-5.687620960887004)--(10.862335493472528,-0.7222308198504819), linewidth(0.8) + blue); 
draw(circle((10.036389397762512,-6.215397752673285), 4.493436789897383), linewidth(0.8) + xfqqff); 
draw((11.688281589182546,4.770936112972321)--(5.687961913815029,-7.347719527458808), linewidth(0.8) + yqqqqq); 
draw((5.687961913815029,-7.347719527458808)--(11.771994161248703,-10.360111287981526), linewidth(0.8)); 
draw((1.4299743859548495,-5.687620960887004)--(10.036389397762512,-6.215397752673285), linewidth(0.8)); 
draw((8.300784634276322,-2.0706842173650433)--(7.699141118482296,-6.072069154557328), linewidth(0.8)); 
 /* dots and labels */
dot((6.368657141965151,2.5433357126321146),linewidth(4.pt) + dotstyle); 
label("$A$", (6.282251150461679,2.774092062416336), NE * labelscalefactor); 
dot((4.512464621764582,-5.062647026226595),dotstyle); 
label("$B$", (4.1150985685584125,-5.121881257735515), NE * labelscalefactor); 
dot((18.972464621764566,-4.982647026226595),dotstyle); 
label("$C$", (19.040184176100908,-4.801519571715034), NE * labelscalefactor); 
dot((8.317221220610055,-5.04159719718734),linewidth(4.pt) + dotstyle); 
label("$D$", (8.110197241284434,-4.726140351474921), NE * labelscalefactor); 
dot((8.300784634276322,-2.0706842173650433),linewidth(4.pt) + dotstyle); 
label("$I$", (8.374024512124832,-1.9182643975307068), NE * labelscalefactor); 
dot((11.771994161248703,-10.360111287981526),linewidth(4.pt) + dotstyle); 
label("$K$", (11.841468643170058,-10.209978623943151), NE * labelscalefactor); 
dot((11.688281589182546,4.770936112972321),linewidth(4.pt) + dotstyle); 
label("$L$", (12.011071888710314,4.300521272278627), NE * labelscalefactor); 
dot((10.036389397762512,-6.215397752673285),linewidth(4.pt) + dotstyle); 
label("$M$", (9.58009203596665,-6.290259171457269), NE * labelscalefactor); 
dot((10.862335493472528,-0.7222308198504819),linewidth(4.pt) + dotstyle); 
label("$N$", (10.428108263667928,-0.9948689495893208), NE * labelscalefactor); 
dot((4.834979824965175,0.31920371462611136),linewidth(4.pt) + dotstyle); 
label("$S$", (5.170407651920003,0.34311220967268735), NE * labelscalefactor); 
dot((9.8239245758683,0.48012718557600564),linewidth(4.pt) + dotstyle); 
label("$E$", (9.900453721987132,0.7388531159332813), NE * labelscalefactor); 
dot((5.414531992539741,-1.3663123105462742),linewidth(4.pt) + dotstyle); 
label("$F$", (5.584993363240629,-1.409454660909943), NE * labelscalefactor); 
dot((1.4299743859548495,-5.687620960887004),linewidth(4.pt) + dotstyle); 
label("$X$", (1.2883778095541518,-5.49877735893608), NE * labelscalefactor); 
dot((5.687961913815029,-7.347719527458808),linewidth(4.pt) + dotstyle); 
label("$Y$", (5.754596608780884,-7.194809814338626), NE * labelscalefactor); 
dot((7.699141118482296,-6.072069154557328),linewidth(4.pt) + dotstyle); 
label("$P$", (7.770990750203923,-5.913363070256703), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
This post has been edited 3 times. Last edited by Om245, Jan 3, 2024, 4:03 AM
Reason: image
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NT_G
45 posts
#5 • 3 Y
Y by Grifon, SBYT, mathlove_13520
My first solution of P1 was similar to SBYT's. I found it accidently while Cartesian bashing the problem for the New Year stream on NeuroGeometry. Trick with proving tangency using radical axis was new for me...

My second solution:
Due to the fact that $ID \parallel KL$, $\angle IDS = \angle LKS$, therefore $LI$ passes through the second intersection of $(SID)$ and $(ABC)$. It means that $(SID)$ contains the point of tangency of circumcircle and mixtilinear circle of $\triangle ABC$.
Now we invert the problem with center in $A$. Problem turns into:
In triangle $ABC$ $I_a$ is the $A$ - excenter. $N$ is the projection of $I_a$ onto $BC$. $L, L_a$ are foots of bisectors of $\angle BAC$. K is a point on $AI_a$ such that $(I,I_a; K, A) = -1$. $A'$ is a point on $\Gamma = (AL_{a}K)$ suiting: $KA = KA'$. $\gamma$ is a circle passing through $N, I_a$ that is tangent to $AI_a$. We have to prove that $KA'$ is tangent to $\gamma$.
Let's spot that due to the fact that $\angle L_{a}AK = \frac{\pi}{2}$, $A'$ is the reflection of $A$ in $KL_a$.Therefore, we have to prove that line $O_{\Gamma}K$ passes through $O_{\gamma}$. $L_a, K, O_{\Gamma}$ are obviously collinear. Let $I_{a}'$ be the reflection of $I_{a}$ over $O_{\Gamma}$. $I_{a}'$ lies on $BC$. Then after spotting that $I_{a}I_{a}' \parallel AL_{a}$ and projecting $(I,I_a; K, A)$ from $L_a$ onto $I_{a}I_{a}' $ we get what we needed.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SerdarBozdag
892 posts
#6 • 1 Y
Y by GeoKing
First problem. $G=AS \cap BC$ is on $(SID)$. $LI \cap ABC = J$. $A'$ is the antipode of $A$ and $S,I,A'$ are collinear. By radical axis theorem on $(ASFIE), (IJK), (ABC)$, $G$ is on $JK$. $H = IN \cap (SID)$. Let $I'$ be the reflection of $I$ across $N$.

$LIMI'$ is parallelogram so $LI' = MI = MK$ and $I'M \parallel JL \implies LJMI'$ is cyclic.

$\angle I'HJ + \angle JMI' = \angle ISJ + \angle JMI + \angle IMI' = \angle JAA' +\angle JMI + \angle JIM = \angle JAA' + 90 + \angle JKA =  \angle JAA' + 90^{\circ} + \angle JA'A = 180^{\circ} \implies H \in (LJMI')$.

$NA^2 = NM^2 = NM \cdot NL = NI' \cdot NH = NI \cdot NH \implies HMNA $ is cyclic. If tangents to $(SID)$ at $I$ and $H$ intersect at $Q$. $\angle NHQ = \angle HIQ = \angle HAN \implies HQ$ is tangent to $(HMNA)$.
Attachments:
This post has been edited 2 times. Last edited by SerdarBozdag, Jan 13, 2024, 8:00 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SerdarBozdag
892 posts
#7 • 1 Y
Y by GeoKing
Second problem. Let $G= EF \cap BC$. $(IMDG) \cap (I) = P$ , $(IMDG) \cap (IEF) = Q$, $(IMDG) \cap AI = L$, $PM \cap GL = S$, $N$ is the antipode of $I$ in $(IEF)$ and $AI \cap (I) = J$. I will prove that $A \in PQ$.

$\angle IQG = 90^{\circ} = \angle IQN \implies N \in QG$.

$\angle EID = 90^{\circ} - \frac{B}{2} = \angle JIF \implies J $ is the reflection of $D$ across $AI$. $\angle IJM = \angle IDM = \angle IPM = \angle IJP \implies J \in PM$. $\angle LGD = \angle DIJ = 2 \cdot \angle DIM = 2 \cdot \angle DGM \implies ML = MD \implies M$ is the center of $(SLJD)$.

$N,S,A$ are collinear $\iff$ (by Menelaus)
$$\frac{NM}{NI} \cdot \frac{IA}{AJ} \cdot \frac{JS}{SM} = 1$$This is true because $\frac{NM}{NI} = \cos^2 (\angle IFE) = \frac{1+\cos (90^{\circ} - \angle A/2) }{2}= \frac{JA}{IA} \cdot \frac{JS}{SM}$.

Applying Pascal on $PQG  LIM$ shows that $PQ \cap LI \in SN \implies A=PQ \cap LI$ as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NT_G
45 posts
#9 • 1 Y
Y by GeoKing
P2: (R.Prozorov's solution)
Let $R$ be the second intersection of $(IMD)$, $BC$. Obviously, $R$ lies on $EF$, and $IR$ is diameter of $(IMD)$.
$\angle IQD = \angle PQI$. So, using DIT for $ABDC$, we get that $\angle BQI = \angle CQI$.
$K = IQ \cap BC$. $IQ \perp QR$, therefore $(R,K; B,C) = -1 \Rightarrow $ $CE$, $BF$, $IQ$ are concurent. Using isogonal theorem for $\angle BQC$ and points $E$, $F$, we prove that $\angle EQI = \angle IQF$. Therefore, due to the equality: $IE = IF$, we get what we needed.
Attachments:
This post has been edited 1 time. Last edited by NT_G, Jan 15, 2024, 7:26 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SBYT
196 posts
#10 • 1 Y
Y by GeoKing
Another solution which is similar to NT_G's:
We get $(R,K;B,C)=-1$ the same way,$IK$ meets $EF$ at $N$.$(R,K;B,C)=-1\implies(IR,IK;IB,IC)=-1\implies(R,N;E,F)=-1\implies(QR,QN;QE,QF)=-1$.
Due to $IQ\perp RQ$,$IQ$ is the angle bisector of $\angle EQF$,and $IE=IF$,so $I,E,Q,F$ are concyclic.$\Box$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bin_sherlo
734 posts
#11 • 1 Y
Y by MS_asdfgzxcvb
I 'll present a solution to the first problem.
Let $AS\cap BC=R,MR\cap (ABC)=T$. Let $R,W'$ be the feet of the perpendicular from $P,N$ to $IN,PI$ respectively. Let $W,I'$ be the reflections of $I$ over $W',N$. Note that $P,T,I,R,S,D$ are concyclic.
Claim: $A,M,N,R$ are concyclic.
Proof: $A,P,K,W$ are concyclic because $IP.IW=IL.IT=IA.IK$ so $A,P,M,W'$ are concyclic. $IA.IM=IP.IW'=IN.IR$ which gives the result.
Let $PR\cap (AMNR)=V$ which is the antipode of $N$. Since $\measuredangle LAM=90$, we have $NA=NM$ and $NV$ is diameter thus, $NV\perp AI\perp IP$. Hence $(RPI)$ and $(RNV)$ are tangent to each other as desired.$\blacksquare$
Z K Y
N Quick Reply
G
H
=
a