Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Geometry
Lukariman   8
N 31 minutes ago by Lukariman
Given circle (O) and point P outside (O). From P draw tangents PA and PB to (O) with contact points A, B. On the opposite ray of ray BP, take point M. The circle circumscribing triangle APM intersects (O) at the second point D. Let H be the projection of B on AM. Prove that $\angle HDM$ = 2∠AMP.
8 replies
1 viewing
Lukariman
Tuesday at 12:43 PM
Lukariman
31 minutes ago
Flight between cities
USJL   5
N an hour ago by Photaesthesia
Source: 2025 Taiwan TST Round 1 Mock P5
A country has 2025 cites, with some pairs of cities having bidirectional flight routes between them. For any pair of the cities, the flight route between them must be operated by one of the companies $X, Y$ or $Z$. To avoid unfairly favoring specific company, the regulation ensures that if there have three cities $A, B$ and $C$, with flight routes $A \leftrightarrow B$ and $A \leftrightarrow C$ operated by two different companies, then there must exist flight route $B \leftrightarrow C$ operated by the third company different from $A \leftrightarrow B$ and $A \leftrightarrow C$ .

Let $n_X$, $n_Y$ and $n_Z$ denote the number of flight routes operated by companies $X, Y$ and $Z$, respectively. It is known that, starting from a city, we can arrive any other city through a series of flight routes (not necessary operated by the same company). Find the minimum possible value of $\max(n_X, n_Y , n_Z)$.

Proposed by usjl and YaWNeeT
5 replies
1 viewing
USJL
Mar 8, 2025
Photaesthesia
an hour ago
A problem from Le Anh Vinh book.
minhquannguyen   0
an hour ago
Source: LE ANH VINH, DINH HUONG BOI DUONG HOC SINH NANG KHIEU TOAN TAP 1 DAI SO
Let $n$ is a positive integer. Determine all functions $f:(1,+\infty)\to\mathbb{R}$ such that
\[f(x^{n+1}+y^{n+1})=x^nf(x)+y^nf(y),\forall x,y>1.\]
0 replies
minhquannguyen
an hour ago
0 replies
IMO ShortList 1999, algebra problem 1
orl   42
N 2 hours ago by ihategeo_1969
Source: IMO ShortList 1999, algebra problem 1
Let $n \geq 2$ be a fixed integer. Find the least constant $C$ such the inequality

\[\sum_{i<j} x_{i}x_{j} \left(x^{2}_{i}+x^{2}_{j} \right) \leq C
\left(\sum_{i}x_{i} \right)^4\]

holds for any $x_{1}, \ldots ,x_{n} \geq 0$ (the sum on the left consists of $\binom{n}{2}$ summands). For this constant $C$, characterize the instances of equality.
42 replies
orl
Nov 13, 2004
ihategeo_1969
2 hours ago
q(x) to be the product of all primes less than p(x)
orl   19
N 2 hours ago by ihategeo_1969
Source: IMO Shortlist 1995, S3
For an integer $x \geq 1$, let $p(x)$ be the least prime that does not divide $x$, and define $q(x)$ to be the product of all primes less than $p(x)$. In particular, $p(1) = 2.$ For $x$ having $p(x) = 2$, define $q(x) = 1$. Consider the sequence $x_0, x_1, x_2, \ldots$ defined by $x_0 = 1$ and \[ x_{n+1} = \frac{x_n p(x_n)}{q(x_n)} \] for $n \geq 0$. Find all $n$ such that $x_n = 1995$.
19 replies
orl
Aug 10, 2008
ihategeo_1969
2 hours ago
Interesting inequality
sealight2107   2
N 2 hours ago by arqady
Source: Own
Let $a,b,c>0$ such that $a+b+c=3$. Find the minimum value of:
$Q=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}$
2 replies
sealight2107
Tuesday at 4:53 PM
arqady
2 hours ago
Cyclic Quads and Parallel Lines
gracemoon124   16
N 4 hours ago by ohiorizzler1434
Source: 2015 British Mathematical Olympiad?
Let $ABCD$ be a cyclic quadrilateral. Let $F$ be the midpoint of the arc $AB$ of its circumcircle which does not contain $C$ or $D$. Let the lines $DF$ and $AC$ meet at $P$ and the lines $CF$ and $BD$ meet at $Q$. Prove that the lines $PQ$ and $AB$ are parallel.
16 replies
gracemoon124
Aug 16, 2023
ohiorizzler1434
4 hours ago
Radical Center on the Euler Line (USEMO 2020/3)
franzliszt   37
N 4 hours ago by Ilikeminecraft
Source: USEMO 2020/3
Let $ABC$ be an acute triangle with circumcenter $O$ and orthocenter $H$. Let $\Gamma$ denote the circumcircle of triangle $ABC$, and $N$ the midpoint of $OH$. The tangents to $\Gamma$ at $B$ and $C$, and the line through $H$ perpendicular to line $AN$, determine a triangle whose circumcircle we denote by $\omega_A$. Define $\omega_B$ and $\omega_C$ similarly.
Prove that the common chords of $\omega_A$,$\omega_B$ and $\omega_C$ are concurrent on line $OH$.

Proposed by Anant Mudgal
37 replies
franzliszt
Oct 24, 2020
Ilikeminecraft
4 hours ago
Functional equation with powers
tapir1729   13
N 4 hours ago by ihategeo_1969
Source: TSTST 2024, problem 6
Determine whether there exists a function $f: \mathbb{Z}_{> 0} \rightarrow \mathbb{Z}_{> 0}$ such that for all positive integers $m$ and $n$,
\[f(m+nf(m))=f(n)^m+2024! \cdot m.\]Jaedon Whyte
13 replies
tapir1729
Jun 24, 2024
ihategeo_1969
4 hours ago
Powers of a Prime
numbertheorist17   34
N 4 hours ago by KevinYang2.71
Source: USA TSTST 2014, Problem 6
Suppose we have distinct positive integers $a, b, c, d$, and an odd prime $p$ not dividing any of them, and an integer $M$ such that if one considers the infinite sequence \begin{align*}
		ca &- db \\
		ca^2 &- db^2 \\
		ca^3 &- db^3 \\
		ca^4 &- db^4 \\
&\vdots
	\end{align*} and looks at the highest power of $p$ that divides each of them, these powers are not all zero, and are all at most $M$. Prove that there exists some $T$ (which may depend on $a,b,c,d,p,M$) such that whenever $p$ divides an element of this sequence, the maximum power of $p$ that divides that element is exactly $p^T$.
34 replies
numbertheorist17
Jul 16, 2014
KevinYang2.71
4 hours ago
IMO 2018 Problem 5
orthocentre   80
N 5 hours ago by OronSH
Source: IMO 2018
Let $a_1$, $a_2$, $\ldots$ be an infinite sequence of positive integers. Suppose that there is an integer $N > 1$ such that, for each $n \geq N$, the number
$$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \cdots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1}$$is an integer. Prove that there is a positive integer $M$ such that $a_m = a_{m+1}$ for all $m \geq M$.

Proposed by Bayarmagnai Gombodorj, Mongolia
80 replies
orthocentre
Jul 10, 2018
OronSH
5 hours ago
Reflecting triangle sides across angle bisector
PEKKA   33
N Apr 1, 2025 by quantam13
Source: Canada MO 2024/1
Let $ABC$ be a triangle with incenter $I$. Suppose the reflection of $AB$ across $CI$ and the reflection of $AC$ across $BI$ intersect at a point $X$. Prove that $XI$ is perpendicular to $BC$.
33 replies
PEKKA
Mar 8, 2024
quantam13
Apr 1, 2025
Reflecting triangle sides across angle bisector
G H J
Source: Canada MO 2024/1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
PEKKA
1848 posts
#1 • 1 Y
Y by Rounak_iitr
Let $ABC$ be a triangle with incenter $I$. Suppose the reflection of $AB$ across $CI$ and the reflection of $AC$ across $BI$ intersect at a point $X$. Prove that $XI$ is perpendicular to $BC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
PEKKA
1848 posts
#2
Y by
Sketch: (Might write up when I get home)
Prove that X,I and D, the point of tangency of the incircle and BC are collinear, the end.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
math_comb01
662 posts
#3 • 1 Y
Y by bjump
Call $(AIB) \cap AC,BC = U,V$ and $(AIC) \cap AB,BC = T,S$ and let $D$ be the foot of perp from $I$ to $BC$. Clearly $DV=DS$ and $\measuredangle XVS = \measuredangle XSV=\measuredangle BAC$ by cyclic quads so done.
This post has been edited 1 time. Last edited by math_comb01, Mar 8, 2024, 4:28 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
awesomeming327.
1714 posts
#4 • 1 Y
Y by PRMOisTheHardestExam
My method: extend the reflections of the sides across angle bisectors to hit BC at R, S then prove that XI is perpendicular bisector of that
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IRANIAN
5 posts
#5
Y by
Let $C'$ and $A'$ be the reflections of $C$ and $A$ across $BI$ and let $B'$ and $A'_1$ be the reflections of $B$ and $A$ across $CI$. Note that $A'$ and $A'_1$ lie on $BC$ and $B'$ and $C'$ lie on $AC$ and $AB$ respectively. By the fact that $AA'_1 \perp BB'$ and $AA' \perp CC'$, we get that $\widehat{XA'A'_1}=\widehat{XA'_1A'}=\widehat{BAC}$ so $XA'=XA'_1$ and since $AB'IBA'_1$ and $AC'CA'I$ are cyclic, $I$ is the incenter of $XA'A'_1$ so $XI\perp BC$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
khina
994 posts
#6 • 8 Y
Y by PRMOisTheHardestExam, PEKKA, bookstuffthanks, LLL2019, Plasma_Vortex, CyclicISLscelesTrapezoid, Bluesoul, EpicBird08
mine :D hope you all enjoyed it. The shortest solution I know is:

Suppose the reflection of $AB$ across $CI$ intersects $BC$ at $E$, and define $F$ similarly. Then $\angle{XEC} = \angle{BAC} = \angle{XFB}$, so $XE = XF$. But also since $E$ and $A$ are reflections across $IC$, $IE = IA$ and hence $IA = IF$. So $XI$ is the perpendicular bisector of $EF$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
BVKRB-
322 posts
#7
Y by
What!?

Let $A_B$ and $A_C$ respectively be the reflections of $A$ about $CI$ and $BI$
Notice that both of these lie on line $BC$ and $IA_B=IA=IA_C$
Obviously $\angle XA_BA_C=\angle BAC = \angle XA_CA_B$ which gives us $XA_B=XA_C$ which combined with the above fact gives us that $XI$ is the perpendicular bisector of $A_BA_C$ which implies it is perpendicular to $BC$

Sniped @above xD Nice problem! :D
This post has been edited 1 time. Last edited by BVKRB-, Mar 8, 2024, 5:09 PM
Reason: Khina orz
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rrc08
767 posts
#8
Y by
awesomeming327. wrote:
My method: extend the reflections of the sides across angle bisectors to hit BC at R, S then prove that XI is perpendicular bisector of that

I did this as well
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vsamc
3789 posts
#9 • 1 Y
Y by bookstuffthanks
Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
alexgsi
139 posts
#10 • 1 Y
Y by Fatemeh06
Solution
Diagram
This post has been edited 2 times. Last edited by alexgsi, Mar 8, 2024, 8:45 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GrantStar
821 posts
#11 • 1 Y
Y by OronSH
hard for a problem 1, or is it just since im bad with lengths?? Really cute though

Let $B'$ and $C'$ be where the reflections hit $BC$. As $\angle XB'C'=\angle XC'B'=\angle BAC$, it suffices to show the midpoint of $B'C'$ is the intouch point. But as $CB'=CA$ and $BC'=BA$ be reflection, this is clearly true say by coordinates or anything to keep track of lengths really.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
eibc
600 posts
#12
Y by
Let $BI$ meet $AC$ at $E$ and $CI$ meet $AB$ at $F$. Also, let $XF$ and $XE$ meet $BC$ at $A_1$ and $A_2$, respectively. Note that
$$\measuredangle A_2A_1X = \measuredangle CA_1F = \measuredangle FAC = \measuredangle BAC,$$and similarly $\measuredangle XA_2A_1 = \measuredangle BAC$, so $\triangle XA_1A_2$ is isosceles. But from the reflections we find that $A_1I$ bisects $\angle XA_1A_2$ and $A_2I$ bisects $\angle XA_2A_1$, so $I$ is the incenter of $\triangle XA_1A_2$. Thus $XI$ bisects $\angle A_1XA_2$, which is enough to imply $\overline{XI} \perp \overline{BC}$.

Edit: I think in the obtuse case $I$ is actually the $X$-Excenter oops but it should be similar
This post has been edited 1 time. Last edited by eibc, Mar 8, 2024, 10:01 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sixoneeight
1138 posts
#13 • 1 Y
Y by OronSH
sus problem
why are there config issues

Let the reflection of $AB$ over $CI$ intersect $BC$ at $A_1$ and let the reflection of $AC$ over $BI$ intersect $BC$ at $A_2$. Note that $\angle XA_1A_2 = \angle A = \angle XA_2A_1$. Therefore, $XA_1A_2$ is isosceles, so it suffices to show that the foot from $I$ to $BC$, which we call $D$, is the midpoint of $A_1A_2$.

By reflections, we have that $IA_1 = IA = IA_2$. Therefore, by the Pythagorean Theorem or congruent triangles or something, we are done.

P.S. I initially used length chase to show the midpoint, but that runs into SO MANY config issues
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
OronSH
1733 posts
#14 • 3 Y
Y by sixoneeight, megarnie, alsk
Let $E,F=BI\cap AC,CI\cap AB.$ Let $B',C'$ be the reflections of $B,C$ over $CI,BI.$ Pappus on $BB'FCC'E$ gives $X$ lies on the line through $I$ and the orthocenter of $BIC$ which finishes.
This post has been edited 2 times. Last edited by OronSH, Mar 9, 2024, 3:02 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
LLL2019
834 posts
#15
Y by
Define $P$, $Y$ to be the intersection of the perpendicular line to $AC$ through $I$ with $AC$ and $AB$. Let $X_1$ be the intersection with the perpendicular line to $BC$ through $I$ with the reflection of $AB$ about $CI$. We can easily prove $X_1IF$ and $IYF$ are congruent. If $Q$ and $Z$ are defined similarly, we see $IY=IZ$, thus $IX_1=IX_2$, hence done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IAmTheHazard
5001 posts
#16 • 1 Y
Y by apotosaurus
khina wrote:
mine :D hope you all enjoyed it. The shortest solution I know is:

Suppose the reflection of $AB$ across $CI$ intersects $BC$ at $E$, and define $F$ similarly. Then $\angle{XEC} = \angle{BAC} = \angle{XFB}$, so $XE = XF$. But also since $E$ and $A$ are reflections across $IC$, $IE = IA$ and hence $IA = IF$. So $XI$ is the perpendicular bisector of $EF$.

Here is a shorter solution:

Let $DEF$ be the contact triangle. Use complex numbers wrt the incircle, so the reflection of $\overline{AB}$ is the tangent at $\tfrac{de}{f}$ and similarly the reflection of $\overline{AC}$ is the tangent at $\tfrac{df}{e}$. Thus $x=\tfrac{2}{\tfrac{f}{de}+\tfrac{e}{df}}$ and $\tfrac{x}{d}=\tfrac{ef}{e^2+f^2} \in \mathbb{R}$ so $I,D,X$ collinear; done.
This post has been edited 1 time. Last edited by IAmTheHazard, Mar 9, 2024, 2:20 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
CT17
1481 posts
#17
Y by
Let $X$ and $Y$ be the reflections of $A$ over $CI$ and $BI$. If $T$ is the desired intersection point, then $\angle TXY = \angle TYX = \angle A$, so the foot from $T$ to $BC$ has distance $\frac{BX+BY}{2} = \frac{BC-AC+AB}{2}$ from $B$ as desired.
This post has been edited 1 time. Last edited by CT17, Mar 9, 2024, 2:28 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ihatemath123
3446 posts
#18 • 2 Y
Y by OronSH, alsk
Very simple and beautiful too :D

Let $E$ be the intersection of the angle bisector of $\angle ABC$ with $\overline{AC}$; let $F$ be the intersection of the angle bisector of $\angle ACB$ with $\overline{AB}$; let $L$ be the reflection of $A$ over the angle bisector of $\angle ACB$; let $K$ be the reflection of $A$ over the angle bisector of $\angle ABC$.

Because of how angle bisectors work, $K$ lies on line $\overline{BC}$ such that $AB = BK$. Furthermore, line $BE$ is the perpendicular bisector of $\overline{AK}$. So, by symmetry, $\angle EKB = \angle EAB = \angle A$. Similarly, $\angle FLC = \angle A$, so $\triangle XLK$ is isosceles. Lastly, since $I$ lies on the perpendicular bisectors of $AL$ and $AK$, it also lies on the perpendicular bisector of $LK$, so it follows that $XI \perp BC$ as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DottedCaculator
7348 posts
#19 • 1 Y
Y by mrtheory
If $A_1C=AC$ and $A_2B=AB$ with $A_1,A_2$ on $BC$, then $XA_1=XA_2$ and $IA_1=IA_2$, so $XI\perp BC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
lelouchvigeo
181 posts
#20
Y by
Nice geo. But still it took time
Let $A_B$ and $A_C$ respectively be the reflections of $A$ about $CI$ and $BI$. Let $IP \perp BC$
Observe that $AA_BA_C$ is isosceles. Now by standard length calculations we can find that $ IP$ is bisects $A_BA_C$. We are done
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
CyclicISLscelesTrapezoid
372 posts
#21 • 1 Y
Y by MS_asdfgzxcvb
Let $E=\overline{BI} \cap \overline{AC}$ and $F=\overline{CI} \cap \overline{AB}$. Let $B'$ and $C'$ be the reflections of $B$ and $C$ over $\overline{CI}$ and $\overline{BI}$, respectively. Notice that $H=\overline{BB'} \cap \overline{CC'}$ is the orthocenter of $IBC$. Pappus on $BB'FCC'E$ gives $I$, $H$, and $X$ collinear, which finishes.
This post has been edited 1 time. Last edited by CyclicISLscelesTrapezoid, Mar 9, 2024, 5:26 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
blackbluecar
303 posts
#22 • 1 Y
Y by OronSH
Let $\omega$ denote the incircle and $D$ be it's tangent at $BC$. By reflection properties, we have $\angle BFI = \angle IFX$. Thus, if we let $FX$ intersect $AC$ at $R$ then $\omega$ is the excircle of $AFR$ which implies $FX$ is tangent to $\omega$. Similarly, $EX$ is tangent to $\omega$. Thus, by Brianchon's on $BFXECD$ we have $BE$, $CF$, and $XD$ concur. But, this point of concurrence is $I$. Thus, $D, I, X$ are collinear which implies the result.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
shendrew7
795 posts
#23 • 1 Y
Y by MS_asdfgzxcvb
Denote the intersection of $BC$ and the two reflections as $K$ and $L$. Note
\[\angle XKC = \angle XLB = \angle A, \quad d(I, XK) = d(I, AB) = d(I, AC) = d(I, XL),\]
so $\triangle XKL$ is isosceles and $I$ lies on the $X$-altitude, as desired. $\blacksquare$
This post has been edited 1 time. Last edited by shendrew7, Mar 9, 2024, 6:46 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mogmog8
1080 posts
#24 • 1 Y
Y by centslordm
Let $A_1$, $A_2$ be the reflections of $A$ over $\overline{CI}$, $\overline{BI}$, respectively. Let $D=\overline{AB}\cap\overline{CI}$ and $E=\overline{AC}\cap\overline{BI}$.

Claim: $I$ is the incenter of $\triangle XA_1A_2$.
Proof. Notice \[\measuredangle IA_2B=\measuredangle BAI=\measuredangle IAD=\measuredangle DA_2I\]and similarly $\overline{IB}$ bisects $\angle A_2A_1X$. $\blacksquare$

Notice $\measuredangle DA_2B=\measuredangle BAD=\measuredangle EAC=\measuredangle CA_1E$ so $\triangle XA_1A_2$ is isosceles and we finish. $\square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Bluesoul
894 posts
#25
Y by
Let $A,B$ are reflected to $A', B'$ and $A,C$ are reflected to $A'', C'$.

Denote the tangency points of the incircle and $AB, BC, CA$ are $D,E,F$ respectively. The condition implies $AC=A'C, AB=A''B, AB=B'C, BC'=BC$ where $A', A''\in BC; B'\in AC; C'\in AB$. Let $AF=AD=a, CD=CE=b, BE=BD=c, AC=a+c=A'C=A'E+EC=A'E+c, A'E=a$. Similar reason yields $A''E=a, A'E=A''E$. Now, the question is equivalent to prove $\angle{B'A'A"}=\angle{C'A"A'}$.

Let $\angle{ACI}=\angle{A'CI}=\alpha, \angle{ABI}=\angle{A"BI"}=\beta$. Since $A'B'$ is the reflection of $AB$ about $CI$, $A'B'$ must intersect $AB$ on $CI$, denote the intersection as $K$. We have $\angle{KB'B}=\angle{KBB'}=\angle{KAA'}=\angle{KA'A}$.

Since $AA'||BB', \angle{CA'A}=\angle{CBB'}=90-\alpha, \angle{B'BA}=90-\alpha-2\beta=\angle{B'A'A}, \angle{B'A'C}=180-2\alpha-2\beta$

By the same reason, we get $\angle{C'A''A}=90-\beta-2\alpha, \angle{C'A"A'}=180-2\alpha-2\beta=\angle{B'A'A"}$

Thus, we have $\angle{XA'A"}=\angle{XA"A'}, AE=A"E$, we know an isosceles triangle's height, angle bisector, and median to the base are the same line, we get $X,I,E$ are collinear which yields $XI\bot BC$ as desired.

(I probably add too many details since I wrote basically nothing in my scratch work but i want to make sure the sol is right <<
This post has been edited 1 time. Last edited by Bluesoul, Mar 9, 2024, 7:40 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
apotosaurus
79 posts
#26
Y by
Hmm maybe I should return to trying to bash every problem I do...
Click to reveal hidden text
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
P2nisic
406 posts
#27
Y by
PEKKA wrote:
Let $ABC$ be a triangle with incenter $I$. Suppose the reflection of $AB$ across $CI$ and the reflection of $AC$ across $BI$ intersect at a point $X$. Prove that $XI$ is perpendicular to $BC$.

Let $D,E,F$ be the tengency points of the incercly.$M=EF\cap CI,N=EF\cap BI$.
By Iran lemma we have that $F,M,I,D,B$ lie on the same circle the symmetry of thiw circle with respect to $CI$ is the circle $Z,M,I,E,B'$.
Now we have that $\measuredangle MZE=\measuredangle EIC=90-\frac{\measuredangle C}{2}=\measuredangle DFE=\measuredangle DZE$ we get that $Z,M,D$ are collinear.SIlilary we have $D,Y,N$.
$\angle ZDI=\angle MDI=\angle MBI=\angle MBN=\angle MCN=\angle ICN=\angle IDN=\angle IDY$ means that $DI$ is the angel bisector of $ZDY$ but also$I$ is the circumcenter of $ZDY$ so $DY=DZ$ witch givesw that $YZ//BC$ it is enougt to prove that $IX$ perpendicular to $YZ$.
This is true because $XY,XZ$ is tengent to the incircle.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sami1618
907 posts
#28
Y by
Let the reflections be $l_C$ and $l_B$ respectively. Let $l_C$ and $l_B$ intersect $BC$ at $C'$ and $B'$ respectively. Let the incirle touch $BC$ at $D$. Using angle chasing $\measuredangle(l_B,BC)=\measuredangle(l_C,BC)$. Use the fact that $AC=CC'$ and $AB=BB'$ to show that $DB'=DC'$. Now it follows that $D$, $X$, and $I$ are collinear proving the claim.
This post has been edited 1 time. Last edited by sami1618, Mar 16, 2024, 9:31 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NTguy
23 posts
#29
Y by
Let the reflection of $AB$ across $CI$ be $A_1B'$, and the reflection of $AC$ across $BI$ be $A_2C'$. Since we have reflected, $\angle ACI = \angle A_1CI = \angle BCI$ and similarly $\angle ABI = \angle A_2BI = \angle CBI$. So, $A_1$ and $A_2$ both lie on $BC$. Also, $\angle XA_1A_2 = \angle B'A_1C = \angle BAC$ and $\angle XA_2A_1 = \angle C'A_1B = \angle CAB$ so $\triangle XA_1A_2$ is isosceles, implying that the incentre and orthocentre are collinear. Since $A_1$ is the reflection of $A$ across $CI$, $\angle IA_1A_2 = \angle IA_1C = \angle IAC = \angle BAC/2 = \angle XA_1A_2/2$ and similarly $\angle IA_2A_1 = \angle XA_2A_1/2$, so $A_1I$ and $A_2I$ bisect $\angle XA_1A_2$ and $\angle XA_2A_1$ respectively, which means $I$ is the incentre of $\triangle XA_1A_2$. So, $XI \perp A_1A_2 \implies XI \perp BC$ and we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
kiemsibongtoi
25 posts
#30
Y by
PEKKA wrote:
Let $ABC$ be a triangle with incenter $I$. Suppose the reflection of $AB$ across $CI$ and the reflection of $AC$ across $BI$ intersect at a point $X$. Prove that $XI$ is perpendicular to $BC$.

Let $D$, $E$, $F$ be points of tangency of $(I)$ with $BC$, $CA$, $AB$, respectively
$\hspace{0.4cm}$$E'$, $F'$ be refelections of $E$, $F$ across $BI$, $CI$ respectively
We see that $E'$, $F'$ are points of tangency of $(I)$ with tangents from $X$ to $(I)$
So $IX \perp E'F'$
Next, cuz $BI$, $CI$ are perpendicular bisecter of segments $DF$, $DE$ respectively, so $DE' = EF = DF'$
Which means $\triangle DE'F'$ is an isosceles triangle at $D$, $ID \perp E'F'$
Thus,$E'F' \| BC$ and $IX \perp BC$
Attachments:
canada-2024.pdf (67kb)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cursed_tangent1434
623 posts
#31
Y by
Very very easy problem. Took me around 5 minutes. Let $A_B$ and $A_C$ denote the reflections of $A$ across lines $BI$ and $CI$ respectively. Further let $B'$ and $C'$ be the reflections of $B$ across $CI$ and $C$ across $BI$. We can first locate all of these points.

Claim : Points $A_B$ and $A_C$ lie on $\overline{BC}$ and points $B'$ and $C'$ lie on $\overline{AC}$ and $\overline{AB}$ respectively.
Proof : The proof of all of these are entirely similar so we only show one of them. Let $D$ be the intersection of line $CI$ with side $AB$. Then, let $A_C'$ denote the intersection of the reflection of side $AB$ across $\overline{CI}$. Note that, $\measuredangle CDA_B' = \measuredangle ADC$ and $\measuredangle A_B'CD = \measuredangle DCA$ which since $DC$ is a common side implies that $\triangle A_B' CD \cong \triangle DCA$. Thus, $DA_B' = DA$ which implies that $A_B'$ is the reflection of $A$ across $\overline{CI}$ and $A_B'\equiv A_B$ as desired.

Now, note that $IA_B = IA=IA_C$ due to reflections so $I$ lies on the perpendicular bisector of segment $A_BA_C$. Further,
\[\measuredangle XA_BA_C = \measuredangle DA_BA_C = \measuredangle CAB = \measuredangle EAB = \measuredangle BA_CE = \measuredangle BA_CX\]so $\triangle XA_BA_C$ is isosceles and in particular, $X$ lies on the perpendicular bisector of segment $A_BA_C$. Thus, $\overline{XI}$ is the perpendicular bisector of segment $A_BA_C$ which implies $XI \perp BC$ as we wished to show.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
maths_enthusiast_0001
133 posts
#32
Y by
Nice and easy problem.
Walkthrough
$1$. Let $A_{1}$ and $A_{2}$ be the reflections of $A$ across $CI$ and $BI$ respectively. It is evident that, $B-A_{1}-A_{2}-C$ because $CI$ and $BI$ are angle bisectors of $\angle{C}$ and $\angle{B}$ respectively.
$2$. After some trivial angle chasing we get that the points $(A,I,A_{1},B)$ and $(A,I,A_{2},B)$ are concyclic. Also since, $A_{1}$ and $A_{2}$ are the reflections of $A$ across $CI$ and $BI$ respectively, we have $IA=IA_{1}=IA_{2}$ i.e, $I$ is the center of $(AA_{1}A_{2})$.
$3$. Again angle chase to show that, $XA_{1}=XA_{2},\angle{XA_{1}A_{2}}=\angle{XA_{2}A_{1}}=180^{\circ}-\angle{A}$ and, $\angle{IA_{1}A_{2}}=\angle{IA_{2}A_{1}}=\frac{\angle{A}}{2}$.
$4$. Let $IA_{1}=IA_{2}=x$,$XA_{1}=XA_{2}=y$ and replace $\angle{B}+\angle{C}$ with $\theta$. Then, $\angle{XA_{1}A_{2}}=\angle{XA_{2}A_{1}}=\theta$ and $\angle{IA_{1}A_{2}}=\angle{IA_{2}A_{1}}=90^{\circ}-\dfrac{\theta}{2}$. Now, $A_{1}A_{2}=2x\sin\left(\frac{\theta}{2}\right)=2y\cos(\theta) \implies \dfrac{x}{y}=\dfrac{\cos(\theta)}{\sin\left(\frac{\theta}{2}\right)} \implies \boxed{\dfrac{A_{1}I}{A_{1}X}=\dfrac{\sin(90^{\circ}-\theta)}{\sin\left(\frac{\theta}{2}\right)}}$.
But by Sine Rule, $\dfrac{A_{1}I}{A_{1}X}=\dfrac{\sin(\angle{A_{1}XI})}{\sin(\angle{A_{1}IX})}$ and also, $\angle{A_{1}XI}+\angle{A_{1}IX}=180^{\circ}-\angle{IA_{1}X}=90^{\circ}-\dfrac{\theta}{2}=(90^{\circ}-\theta)+\left(\frac{\theta}{2}\right)$.
Thus we get, $\boxed{\dfrac{\sin(\angle{A_{1}XI})}{\sin(\angle{A_{1}IX})}=\dfrac{\sin(90^{\circ}-\theta)}{\sin\left(\frac{\theta}{2}\right)}}$ with $\boxed{\angle{A_{1}XI}+\angle{A_{1}IX}=(90^{\circ}-\theta)+\left(\frac{\theta}{2}\right)}$.
$5$. By "$\alpha+\gamma=\beta+\delta$ Lemma" conclude that, $\angle{A_{1}XI}=90^{\circ}-\theta$ and $\angle{A_{1}IX}=\dfrac{\theta}{2}$. We had $\angle{XA_{1}A_{2}}=\angle{XA_{2}A_{1}}=\theta$ thus, $XI \perp BC$ as desired. $\blacksquare$ ($\mathcal{QED}$)
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tony_stark0094
69 posts
#33
Y by
claim $XA'A_1'$ is isosceles
CI is the perpendicular bisector of AA'
so we can deduce $\angle B'A'B=\angle BAB' =\angle BAC $
claim $AA_1'CC'$ is cyclic
proof : BI is perpendicular bisector of CC' so we can deduce $\angle AC'A_1'=\angle ACA_1'$

so $\angle B'A'B=\angle BAC= \angle=BAA1'+\angle A1'AC=\angle A1'CC'+\angle A1'C'C=\angle C'A1'B$
SO$ XA'=XA_1'$
similarly we can get $A_1'X=A'A_1'$
also we can see I is the incentre of the new trianlge and the required result immidiately follows
Attachments:
This post has been edited 3 times. Last edited by Tony_stark0094, Mar 23, 2025, 3:46 AM
Reason: error
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
quantam13
112 posts
#34
Y by
Complex bash with respect to the incircle finishes :)
Z K Y
N Quick Reply
G
H
=
a