Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Strange angle condition and concyclic points
lminsl   126
N an hour ago by cj13609517288
Source: IMO 2019 Problem 2
In triangle $ABC$, point $A_1$ lies on side $BC$ and point $B_1$ lies on side $AC$. Let $P$ and $Q$ be points on segments $AA_1$ and $BB_1$, respectively, such that $PQ$ is parallel to $AB$. Let $P_1$ be a point on line $PB_1$, such that $B_1$ lies strictly between $P$ and $P_1$, and $\angle PP_1C=\angle BAC$. Similarly, let $Q_1$ be the point on line $QA_1$, such that $A_1$ lies strictly between $Q$ and $Q_1$, and $\angle CQ_1Q=\angle CBA$.

Prove that points $P,Q,P_1$, and $Q_1$ are concyclic.

Proposed by Anton Trygub, Ukraine
126 replies
lminsl
Jul 16, 2019
cj13609517288
an hour ago
Geo with unnecessary condition
egxa   7
N an hour ago by ehuseyinyigit
Source: Turkey Olympic Revenge 2024 P4
Let the circumcircle of a triangle $ABC$ be $\Gamma$. The tangents to $\Gamma$ at $B,C$ meet at point $E$. For a point $F$ on line $BC$ which is not on the segment $BC$, let the midpoint of $EF$ be $G$. Lines $GB,GC$ meet $\Gamma$ again at points $I,H$ respectively. Let $M$ be the midpoint of $BC$. Prove that the points $F,I,H,M$ lie on a circle.

Proposed by Mehmet Can Baştemir
7 replies
egxa
Aug 6, 2024
ehuseyinyigit
an hour ago
Functional equations
hanzo.ei   19
N an hour ago by GreekIdiot
Source: Greekldiot
Find all $f: \mathbb R_+ \rightarrow \mathbb R_+$ such that $f(xf(y)+f(x))=yf(x+yf(x)) \: \forall \: x,y \in \mathbb R_+$
19 replies
hanzo.ei
Mar 29, 2025
GreekIdiot
an hour ago
Functional Equation
AnhQuang_67   3
N an hour ago by GreekIdiot
Find all functions $f: \mathbb{R} \to \mathbb{R}$ satisfying $$2\cdot f\Big(\dfrac{-xy}{2}+f(x+y)\Big)=xf(y)+y(x), \forall x, y \in \mathbb{R} $$











3 replies
AnhQuang_67
5 hours ago
GreekIdiot
an hour ago
n=y^2+108
Havu   7
N an hour ago by GreekIdiot
Given the positive integer $n = y^2 + 108$ where $y \in \mathbb{N}$.
Prove that $n$ cannot be a perfect cube of a positive integer.
7 replies
Havu
Yesterday at 4:30 PM
GreekIdiot
an hour ago
Geometry :3c
popop614   4
N 2 hours ago by goaoat
Source: MINE :<
Quadrilateral $ABCD$ has an incenter $I$ Suppose $AB > BC$. Let $M$ be the midpoint of $AC$. Suppose that $MI \perp BI$. $DI$ meets $(BDM)$ again at point $T$. Let points $P$ and $Q$ be such that $T$ is the midpoint of $MP$ and $I$ is the midpoint of $MQ$. Point $S$ lies on the plane such that $AMSQ$ is a parallelogram, and suppose the angle bisectors of $MCQ$ and $MSQ$ concur on $IM$.

The angle bisectors of $\angle PAQ$ and $\angle PCQ$ meet $PQ$ at $X$ and $Y$. Prove that $PX = QY$.
4 replies
1 viewing
popop614
Yesterday at 12:19 AM
goaoat
2 hours ago
$f(xy)=xf(y)+yf(x)$
yumeidesu   2
N 3 hours ago by jasperE3
Find $f: \mathbb{R} \to \mathbb{R}$ such that $f(x+y)=f(x)+f(y), \forall x, y \in \mathbb{R}$ and $f(xy)=xf(y)+yf(x), \forall x, y \in \mathbb{R}.$
2 replies
yumeidesu
Apr 14, 2020
jasperE3
3 hours ago
Pythagorean journey on the blackboard
sarjinius   1
N 3 hours ago by alfonsoramires
Source: Philippine Mathematical Olympiad 2025 P2
A positive integer is written on a blackboard. Carmela can perform the following operation as many times as she wants: replace the current integer $x$ with another positive integer $y$, as long as $|x^2 - y^2|$ is a perfect square. For example, if the number on the blackboard is $17$, Carmela can replace it with $15$, because $|17^2 - 15^2| = 8^2$, then replace it with $9$, because $|15^2 - 9^2| = 12^2$. If the number on the blackboard is initially $3$, determine all integers that Carmela can write on the blackboard after finitely many operations.
1 reply
sarjinius
Mar 9, 2025
alfonsoramires
3 hours ago
Assisted perpendicular chasing
sarjinius   4
N 3 hours ago by X.Allaberdiyev
Source: Philippine Mathematical Olympiad 2025 P7
In acute triangle $ABC$ with circumcenter $O$ and orthocenter $H$, let $D$ be an arbitrary point on the circumcircle of triangle $ABC$ such that $D$ does not lie on line $OB$ and that line $OD$ is not parallel to line $BC$. Let $E$ be the point on the circumcircle of triangle $ABC$ such that $DE$ is perpendicular to $BC$, and let $F$ be the point on line $AC$ such that $FA = FE$. Let $P$ and $R$ be the points on the circumcircle of triangle $ABC$ such that $PE$ is a diameter, and $BH$ and $DR$ are parallel. Let $M$ be the midpoint of $DH$.
(a) Show that $AP$ and $BR$ are perpendicular.
(b) Show that $FM$ and $BM$ are perpendicular.
4 replies
sarjinius
Mar 9, 2025
X.Allaberdiyev
3 hours ago
Problem 2
SlovEcience   1
N 4 hours ago by Primeniyazidayi
Let \( a, n \) be positive integers and \( p \) be an odd prime such that:
\[
a^p \equiv 1 \pmod{p^n}.
\]Prove that:
\[
a \equiv 1 \pmod{p^{n-1}}.
\]
1 reply
SlovEcience
6 hours ago
Primeniyazidayi
4 hours ago
H not needed
dchenmathcounts   45
N 4 hours ago by EpicBird08
Source: USEMO 2019/1
Let $ABCD$ be a cyclic quadrilateral. A circle centered at $O$ passes through $B$ and $D$ and meets lines $BA$ and $BC$ again at points $E$ and $F$ (distinct from $A,B,C$). Let $H$ denote the orthocenter of triangle $DEF.$ Prove that if lines $AC,$ $DO,$ $EF$ are concurrent, then triangle $ABC$ and $EHF$ are similar.

Robin Son
45 replies
dchenmathcounts
May 23, 2020
EpicBird08
4 hours ago
Problem 1
blug   4
N 5 hours ago by grupyorum
Source: Polish Math Olympiad 2025 Finals P1
Find all $(a, b, c, d)\in \mathbb{R}$ satisfying
\[\begin{aligned}
\begin{cases}
    a+b+c+d=0,\\
    a^2+b^2+c^2+d^2=12,\\
    abcd=-3.\\
\end{cases}
\end{aligned}\]
4 replies
blug
Today at 11:46 AM
grupyorum
5 hours ago
April Fools Geometry
awesomeming327.   6
N 5 hours ago by GreekIdiot
Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ be the projection from $A$ onto $BC$. Let $E$ be a point on the extension of $AD$ past $D$ such that $\angle BAC+\angle BEC=90^\circ$. Let $L$ be on the perpendicular bisector of $AE$ such that $L$ and $C$ are on the same side of $AE$ and
\[\frac12\angle ALE=1.4\angle ABE+3.4\angle ACE-558^\circ\]Let the reflection of $D$ across $AB$ and $AC$ be $W$ and $Y$, respectively. Let $X\in AW$ and $Z\in AY$ such that $\angle XBE=\angle ZCE=90^\circ$. Let $EX$ and $EZ$ intersect the circumcircles of $EBD$ and $ECD$ at $J$ and $K$, respectively. Let $LB$ and $LC$ intersect $WJ$ and $YK$ at $P$ and $Q$. Let $PQ$ intersect $BC$ at $F$. Prove that $FB/FC=DB/DC$.
6 replies
awesomeming327.
Apr 1, 2025
GreekIdiot
5 hours ago
April Fools Geometry
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
awesomeming327.
1687 posts
#1 • 2 Y
Y by scannose, Rounak_iitr
Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ be the projection from $A$ onto $BC$. Let $E$ be a point on the extension of $AD$ past $D$ such that $\angle BAC+\angle BEC=90^\circ$. Let $L$ be on the perpendicular bisector of $AE$ such that $L$ and $C$ are on the same side of $AE$ and
\[\frac12\angle ALE=1.4\angle ABE+3.4\angle ACE-558^\circ\]Let the reflection of $D$ across $AB$ and $AC$ be $W$ and $Y$, respectively. Let $X\in AW$ and $Z\in AY$ such that $\angle XBE=\angle ZCE=90^\circ$. Let $EX$ and $EZ$ intersect the circumcircles of $EBD$ and $ECD$ at $J$ and $K$, respectively. Let $LB$ and $LC$ intersect $WJ$ and $YK$ at $P$ and $Q$. Let $PQ$ intersect $BC$ at $F$. Prove that $FB/FC=DB/DC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
awesomeming327.
1687 posts
#2
Y by
Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
avinashp
1136 posts
#3
Y by
awesomeming327. wrote:
Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ be the projection from $A$ onto $BC$. Let $E$ be a point on the extension of $AD$ past $D$ such that $\angle BAC+\angle BEC=90^\circ$. Let $L$ be on the perpendicular bisector of $AE$ such that $L$ and $C$ are on the same side of $AE$ and
\[\frac12\angle ALE=1.4\angle ABE+3.4\angle ACE-558^\circ\]Let the reflection of $D$ across $AB$ and $AC$ be $W$ and $Y$, respectively. Let $X\in AW$ and $Z\in AY$ such that $\angle XBE=\angle ZCE=90^\circ$. Let $EX$ and $EZ$ intersect the circumcircles of $EBD$ and $ECD$ at $J$ and $K$, respectively. Let $LB$ and $LC$ intersect $WJ$ and $YK$ at $P$ and $Q$. Let $PQ$ intersect $BC$ at $F$. Prove that $FB/FC=DB/DC$.

I dont get it
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
awesomeming327.
1687 posts
#4
Y by
avinashp wrote:
awesomeming327. wrote:
Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ be the projection from $A$ onto $BC$. Let $E$ be a point on the extension of $AD$ past $D$ such that $\angle BAC+\angle BEC=90^\circ$. Let $L$ be on the perpendicular bisector of $AE$ such that $L$ and $C$ are on the same side of $AE$ and
\[\frac12\angle ALE=1.4\angle ABE+3.4\angle ACE-558^\circ\]Let the reflection of $D$ across $AB$ and $AC$ be $W$ and $Y$, respectively. Let $X\in AW$ and $Z\in AY$ such that $\angle XBE=\angle ZCE=90^\circ$. Let $EX$ and $EZ$ intersect the circumcircles of $EBD$ and $ECD$ at $J$ and $K$, respectively. Let $LB$ and $LC$ intersect $WJ$ and $YK$ at $P$ and $Q$. Let $PQ$ intersect $BC$ at $F$. Prove that $FB/FC=DB/DC$.

I dont get it

I’m sorry for your loss
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
avinashp
1136 posts
#5
Y by
huh $         $
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
PEKKA
1835 posts
#6 • 1 Y
Y by Maximilian113
Hi ming how so orz
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GreekIdiot
168 posts
#7
Y by
awesomeming327. wrote:
Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ be the projection from $A$ onto $BC$. Let $E$ be a point on the extension of $AD$ past $D$ such that $\angle BAC+\angle BEC=90^\circ$. Let $L$ be on the perpendicular bisector of $AE$ such that $L$ and $C$ are on the same side of $AE$ and
\[\frac12\angle ALE=1.4\angle ABE+3.4\angle ACE-558^\circ\]Let the reflection of $D$ across $AB$ and $AC$ be $W$ and $Y$, respectively. Let $X\in AW$ and $Z\in AY$ such that $\angle XBE=\angle ZCE=90^\circ$. Let $EX$ and $EZ$ intersect the circumcircles of $EBD$ and $ECD$ at $J$ and $K$, respectively. Let $LB$ and $LC$ intersect $WJ$ and $YK$ at $P$ and $Q$. Let $PQ$ intersect $BC$ at $F$. Prove that $FB/FC=DB/DC$.

Trivial by AFT
Z K Y
N Quick Reply
G
H
=
a