Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Maximum area of the triangle
adityaguharoy   1
N 9 minutes ago by Mathzeus1024
If in some triangle $\triangle ABC$ we are given :
$\sqrt{3} \cdot \sin(C)=\frac{2- \sin A}{\cos A}$ and one side length of the triangle equals $2$, then under these conditions find the maximum area of the triangle $ABC$.
1 reply
adityaguharoy
Jan 19, 2017
Mathzeus1024
9 minutes ago
Concurrent lines
BR1F1SZ   4
N 20 minutes ago by NicoN9
Source: 2025 CJMO P2
Let $ABCD$ be a trapezoid with parallel sides $AB$ and $CD$, where $BC\neq DA$. A circle passing through $C$ and $D$ intersects $AC, AD, BC, BD$ again at $W, X, Y, Z$ respectively. Prove that $WZ, XY, AB$ are concurrent.
4 replies
BR1F1SZ
Mar 7, 2025
NicoN9
20 minutes ago
Arithmetic progression
BR1F1SZ   2
N 31 minutes ago by NicoN9
Source: 2025 CJMO P1
Suppose an infinite non-constant arithmetic progression of integers contains $1$ in it. Prove that there are an infinite number of perfect cubes in this progression. (A perfect cube is an integer of the form $k^3$, where $k$ is an integer. For example, $-8$, $0$ and $1$ are perfect cubes.)
2 replies
BR1F1SZ
Mar 7, 2025
NicoN9
31 minutes ago
Number Theory Chain!
JetFire008   51
N 40 minutes ago by Primeniyazidayi
I will post a question and someone has to answer it. Then they have to post a question and someone else will answer it and so on. We can only post questions related to Number Theory and each problem should be more difficult than the previous. Let's start!

Question 1
51 replies
+1 w
JetFire008
Apr 7, 2025
Primeniyazidayi
40 minutes ago
Injective arithmetic comparison
adityaguharoy   1
N an hour ago by Mathzeus1024
Source: Own .. probably own
Show or refute :
For every injective function $f: \mathbb{N} \to \mathbb{N}$ there are elements $a,b,c$ in an arithmetic progression in the order $a<b<c$ such that $f(a)<f(b)<f(c)$ .
1 reply
adityaguharoy
Jan 16, 2017
Mathzeus1024
an hour ago
Abelkonkurransen 2025 1b
Lil_flip38   2
N an hour ago by Lil_flip38
Source: abelkonkurransen
In Duckville there is a perpetual trophy with the words “Best child of Duckville” engraved on it. Each inhabitant of Duckville has a non-empty list (which never changes) of other inhabitants of Duckville. Whoever receives the trophy
gets to keep it for one day, and then passes it on to someone on their list the next day. Gregers has previously received the trophy. It turns out that each time he does receive it, he is guaranteed to receive it again exactly $2025$ days later (but perhaps earlier, as well). Hedvig received the trophy today. Determine all integers $n>0$ for which we can be absolutely certain that she cannot receive the trophy again in $n$ days, given the above information.
2 replies
Lil_flip38
Mar 20, 2025
Lil_flip38
an hour ago
Symmetric inequalities under two constraints
ChrP   4
N an hour ago by ChrP
Let $a+b+c=0$ such that $a^2+b^2+c^2=1$. Prove that $$ \sqrt{2-3a^2}+\sqrt{2-3b^2}+\sqrt{2-3c^2} \leq 2\sqrt{2}  $$
and

$$ a\sqrt{2-3a^2}+b\sqrt{2-3b^2}+c\sqrt{2-3c^2} \geq 0  $$
What about the lower bound in the first case and the upper bound in the second?
4 replies
ChrP
Apr 7, 2025
ChrP
an hour ago
Terms of a same AP
adityaguharoy   1
N 2 hours ago by Mathzeus1024
Given $p,q,r$ are positive integers pairwise distinct and $n$ is also a positive integer $n \ne 1$.
Determine under which conditions can $\sqrt[n]{p},\sqrt[n]{q},\sqrt[n]{r}$ form terms of a same arithmetic progression.

1 reply
adityaguharoy
May 4, 2017
Mathzeus1024
2 hours ago
Inspired by old results
sqing   8
N 2 hours ago by sqing
Source: Own
Let $ a,b\geq 0 $ and $  a^2+ab+b^2=2$ . Prove that
$$ (a+b-ab)\left( \frac{1}{a+1} + \frac{1}{b+1}\right)\leq 2 $$$$ (a+b-ab)\left( \frac{a}{b+1} + \frac{2b}{a+2}\right)\leq 2 $$$$ (a+b-ab)\left( \frac{a}{b+1} + \frac{2b}{a+1}\right)\leq 4$$Let $ a,b  $ be reals such that $  a^2+b^2=2$ . Prove that
$$ (a+b)\left( \frac{1}{a+1} + \frac{1}{b+1}\right)= 2 $$$$ (a+b)\left( \frac{a}{b+1} + \frac{b}{a+1}\right)=2 $$
8 replies
sqing
Today at 2:42 AM
sqing
2 hours ago
Transform the sequence
steven_zhang123   1
N 2 hours ago by vgtcross
Given a sequence of \( n \) real numbers \( a_1, a_2, \ldots, a_n \), we can select a real number \( \alpha \) and transform the sequence into \( |a_1 - \alpha|, |a_2 - \alpha|, \ldots, |a_n - \alpha| \). This transformation can be performed multiple times, with each chosen real number \( \alpha \) potentially being different
(i) Prove that it is possible to transform the sequence into all zeros after a finite number of such transformations.
(ii) To ensure that the above result can be achieved for any given initial sequence, what is the minimum number of transformations required?
1 reply
steven_zhang123
Today at 3:57 AM
vgtcross
2 hours ago
NEPAL TST DAY 2 PROBLEM 2
Tony_stark0094   5
N 2 hours ago by ThatApollo777
Kritesh manages traffic on a $45 \times 45$ grid consisting of 2025 unit squares. Within each unit square is a car, facing either up, down, left, or right. If the square in front of a car in the direction it is facing is empty, it can choose to move forward. Each car wishes to exit the $45 \times 45$ grid.

Kritesh realizes that it may not always be possible for all the cars to leave the grid. Therefore, before the process begins, he will remove $k$ cars from the $45 \times 45$ grid in such a way that it becomes possible for all the remaining cars to eventually exit the grid.

What is the minimum value of $k$ that guarantees that Kritesh's job is possible?

$\textbf{Proposed by Shining Sun. USA}$
5 replies
Tony_stark0094
Yesterday at 8:37 AM
ThatApollo777
2 hours ago
Product of distinct integers in arithmetic progression -- ever a perfect power ?
adityaguharoy   1
N 2 hours ago by Mathzeus1024
Source: Well known (the gen. is more difficult, but may be not this one -- so this is here)
Let $a_1,a_2,a_3,a_4$ be four positive integers in arithmetic progression (that is, $a_1-a_2=a_2-a_3=a_3-a_4$) and with $a_1 \ne a_2$. Can the product $a_1 \cdot a_2 \cdot a_3 \cdot a_4$ ever be a number of the form $n^k$ for some $n \in \mathbb{N}$ and some $k \in \mathbb{N}$, with $k \ge 2$ ?
1 reply
adityaguharoy
Aug 31, 2019
Mathzeus1024
2 hours ago
Equilateral triangles with a parallelogram
kred9   1
N Apr 6, 2025 by bjump
Source: 2025 Utah Math Olympiad #5
Given parallelogram $ABCD$, we construct equilateral triangle $ABP$ such that $P$ is on the same side of $\overline{AB}$ as $C$ and $D$. It is given that $\overleftrightarrow{CP}$ intersects $\overleftrightarrow{DA}$ at $Q$. Prove that there exists a point $R$ on $\overleftrightarrow{AB}$ such that $\triangle CQR$ is equilateral.
1 reply
kred9
Apr 6, 2025
bjump
Apr 6, 2025
Equilateral triangles with a parallelogram
G H J
G H BBookmark kLocked kLocked NReply
Source: 2025 Utah Math Olympiad #5
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
kred9
1021 posts
#1
Y by
Given parallelogram $ABCD$, we construct equilateral triangle $ABP$ such that $P$ is on the same side of $\overline{AB}$ as $C$ and $D$. It is given that $\overleftrightarrow{CP}$ intersects $\overleftrightarrow{DA}$ at $Q$. Prove that there exists a point $R$ on $\overleftrightarrow{AB}$ such that $\triangle CQR$ is equilateral.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bjump
999 posts
#2 • 1 Y
Y by kred9
Let $I$ be the midpoint of $QC$, $J$ be the midpoint of $BA$, let $G$ be where the perpendicular bisector of $CQ$ intersects $AB$. Note that
$$\measuredangle GJE = \measuredangle GIE = 90^\circ$$Therefore $IEJG$ is cyclic. Observe as $IJ \parallel BC$. Converse of Reim with the previous two facts gives $GBEC$ cyclic. Therefore:
$$\measuredangle GCE = \measuredangle GBE = 60^\circ$$Therefore $\triangle GFC$ is equilateral.
Z K Y
N Quick Reply
G
H
=
a