Happy Memorial Day! Please note that AoPS Online is closed May 24-26th.

G
Topic
First Poster
Last Poster
An incentre is all it takes to replace the compass
starchan   8
N 20 minutes ago by Giant_PT
Source: Sharygin Correspondence Round 2024 P19
A triangle $ABC$, its circumcircle, and its incenter $I$ are drawn on the plane. Construct the circumcenter of $ABC$ using only a ruler.
8 replies
starchan
Mar 6, 2024
Giant_PT
20 minutes ago
A sharp one with 4 var
mihaig   0
an hour ago
Source: Own
Let $a,b,c,d\geq0$ satisfying
$$\left(a+b+c+d-1\right)^2+7\leq\frac83\cdot\left(ab+bc+ca+ad+bd+cd\right).$$Prove
$$\frac1{a+1}+\frac1{b+1}+\frac1{c+1}+\frac1{d+1}\leq2.$$
0 replies
mihaig
an hour ago
0 replies
A geometry problem
Lttgeometry   0
an hour ago
Triangle $ABC$ has two isogonal conjugate points $P$ and $Q$. The circle $(BPC)$ intersects circle $(AP)$ at $R \neq P$, and the circle $(BQC)$ intersects circle $(AQ)$ at $S\neq Q$. Prove that $R$ and $S$ are isogonal conjugates in triangle $ABC$.
Note: Circle $(AP)$ is the circle with diameter $AP$, Circle $(AQ)$ is the circle with diameter $AQ$.
0 replies
Lttgeometry
an hour ago
0 replies
A sharp one with 3 var
mihaig   9
N an hour ago by mihaig
Source: Own
Let $a,b,c\geq0$ satisfying
$$\left(a+b+c-2\right)^2+8\leq3\left(ab+bc+ca\right).$$Prove
$$ab+bc+ca+abc\geq4.$$
9 replies
mihaig
May 13, 2025
mihaig
an hour ago
Van der Corput Inequality
EthanWYX2009   0
2 hours ago
Source: en.wikipedia.org/wiki/Van_der_Corput_inequality
Let $V$ be a real or complex inner product space. Suppose that ${\displaystyle v,u_{1},\dots ,u_{n}\in V} $ and that ${\displaystyle \|v\|=1}.$ Then$${\displaystyle \displaystyle \left(\sum _{i=1}^{n}|\langle v,u_{i}\rangle |\right)^{2}\leq \sum _{i,j=1}^{n}|\langle u_{i},u_{j}\rangle |.}$$
0 replies
EthanWYX2009
2 hours ago
0 replies
Hard Functional Equation in the Complex Numbers
yaybanana   6
N 2 hours ago by jasperE3
Source: Own
Find all functions $f:\mathbb {C}\rightarrow \mathbb {C}$, s.t :

$f(xf(y)) + f(x^2+y) = f(x+y)x + f(f(y))$

for all $x,y \in \mathbb{C}$
6 replies
yaybanana
Apr 9, 2025
jasperE3
2 hours ago
FE with conditions on $x,y$
Adywastaken   3
N 2 hours ago by jasperE3
Source: OAO
Find all functions $f:\mathbb{R_{+}}\rightarrow \mathbb{R_{+}}$ such that $\forall y>x>0$,
\[
f(x^2+f(y))=f(xf(x))+y
\]
3 replies
Adywastaken
Friday at 6:18 PM
jasperE3
2 hours ago
Point satisfies triple property
62861   36
N 3 hours ago by cursed_tangent1434
Source: USA Winter Team Selection Test #2 for IMO 2018, Problem 2
Let $ABCD$ be a convex cyclic quadrilateral which is not a kite, but whose diagonals are perpendicular and meet at $H$. Denote by $M$ and $N$ the midpoints of $\overline{BC}$ and $\overline{CD}$. Rays $MH$ and $NH$ meet $\overline{AD}$ and $\overline{AB}$ at $S$ and $T$, respectively. Prove that there exists a point $E$, lying outside quadrilateral $ABCD$, such that
[list]
[*] ray $EH$ bisects both angles $\angle BES$, $\angle TED$, and
[*] $\angle BEN = \angle MED$.
[/list]

Proposed by Evan Chen
36 replies
62861
Jan 22, 2018
cursed_tangent1434
3 hours ago
Inspired by 2025 Xinjiang
sqing   1
N 3 hours ago by sqing
Source: Own
Let $ a,b,c >0  . $ Prove that
$$  \left(1+\frac {a} { b}\right)\left(2+\frac {a}{ b}+\frac {b}{ c}\right) \left(1+\frac {a}{b}+\frac {b}{ c}+\frac {c}{ a}\right)  \geq 12+8\sqrt 2 $$
1 reply
1 viewing
sqing
Yesterday at 5:32 PM
sqing
3 hours ago
Find the minimum
sqing   27
N 3 hours ago by sqing
Source: Zhangyanzong
Let $a,b$ be positive real numbers such that $a^2b^2+\frac{4a}{a+b}=4.$ Find the minimum value of $a+2b.$
27 replies
sqing
Sep 4, 2018
sqing
3 hours ago
Sharygin 2025 CR P15
Gengar_in_Galar   7
N 3 hours ago by Giant_PT
Source: Sharygin 2025
A point $C$ lies on the bisector of an acute angle with vertex $S$. Let $P$, $Q$ be the projections of $C$ to the sidelines of the angle. The circle centered at $C$ with radius $PQ$ meets the sidelines at points $A$ and $B$ such that $SA\ne SB$. Prove that the circle with center $A$ touching $SB$ and the circle with center $B$ touching $SA$ are tangent.
Proposed by: A.Zaslavsky
7 replies
Gengar_in_Galar
Mar 10, 2025
Giant_PT
3 hours ago
Point moving towards vertices and changing plans again and again
Miquel-point   0
Apr 6, 2025
Source: Romanian IMO TST 1981, Day 3 P6
In the plane of traingle $ABC$ we consider a variable point $M$ which moves on line $MA$ towards $A$. Halfway there, it stops and starts moving in a straight line line towards $B$. Halfway there, it stops and starts moving in a straight line towards $C$, and halfway there it stops and starts moving in a straight line towards $A$, and so on. Show that $M$ will get as close as we want to the vertices of a fixed triangle with area $\text{area}(ABC)/7$.
0 replies
Miquel-point
Apr 6, 2025
0 replies
Point moving towards vertices and changing plans again and again
G H J
G H BBookmark kLocked kLocked NReply
Source: Romanian IMO TST 1981, Day 3 P6
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Miquel-point
499 posts
#1 • 1 Y
Y by PikaPika999
In the plane of traingle $ABC$ we consider a variable point $M$ which moves on line $MA$ towards $A$. Halfway there, it stops and starts moving in a straight line line towards $B$. Halfway there, it stops and starts moving in a straight line towards $C$, and halfway there it stops and starts moving in a straight line towards $A$, and so on. Show that $M$ will get as close as we want to the vertices of a fixed triangle with area $\text{area}(ABC)/7$.
Z K Y
N Quick Reply
G
H
=
a